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Recent research on the robust and stochastic travelling salesman problem and the vehicle routing problem

has seen many different approaches for describing the region of ambiguity, such as taking convex combinations

of observed demand vectors or imposing constraints on the moments of the spatial demand distribution. One

approach that has been used outside the transportation sector is the use of statistical metrics that describe a

distance function between two probability distributions. In this paper, we consider a distributionally robust version

of the Euclidean travelling salesman problem in which we compute the worst-case spatial distribution of demand

against all distributions whose Wasserstein distance to an observed demand distribution is bounded from above.

This constraint allows us to circumvent common overestimation that arises when other procedures are used, such

as fixing the center of mass and the covariance matrix of the distribution. Numerical experiments confirm that our

new approach is useful as a decision support tool for dividing a territory into service districts for a fleet of vehicle

when limited data is available.

1 Introduction

One of the most complex factors that arises in formulating and solving robust travelling salesman problems (TSP)

and vehicle routing problems (VRP) is the difficulty of describing one’s ambiguity set in a way that is both useful

and mathematically tractable. Recent works have seen many different approaches for describing these sets, such as

taking convex combinations of observed demand vectors [83], general polyhedral constructions [49], and using mean

and covariance information about the spatial distribution of destination points [30]. The choice of one’s ambiguity

set often yields qualitative insights into what demand patterns affect the outcome most significantly; for example,

the worst-case spatial distribution for the Euclidean TSP is that which is as equitably distributed (uniform) as
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possible [79].

In this paper, we consider a distributionally robust version of the Euclidean TSP: as input, we are given a

compact, contiguous planar region R and a realization of sampled demand points in that region, and our objective

is to construct a probability distribution on R that is sufficiently “close” to the empirical distribution consisting

of the sampled points and is as “spread out” as possible, in the sense that the asymptotic length of a TSP tour of

points drawn from that distribution should be as large as possible. In order to characterize our ambiguity set of

distributions, we use a statistical metric called the Wasserstein distance, which is also known as the earth mover’s

or Kantorovich metric. Conceptually speaking, the Wasserstein distance is very simple and intuitive: if we visualize

two probability distributions µ1 and µ2 as being two piles of equal amounts of sand, then the Wasserstein distance

between them is simply the minimum amount of work needed to move one pile to take the shape of the other, as

suggested in Figure 1a. A particularly attractive feature of the Wasserstein distance that is not present in many

other statistical metrics is the ability to directly compare a discrete distribution and a continuous distribution, as

illustrated in Figures 1e-1g. In addition, because the Wasserstein distance is a true metric, the set of all distributions

within a certain distance of a reference distribution is a convex set that turns out to admit a simple representation.

This paper is structured as follows: Section 2 describes the basic theoretical preliminaries that are needed for

the analysis that we perform in Section 3, which describes the structure of the worst-case spatial distribution for

the TSP under a Wasserstein distance constraint. Next, Section 4 describes a primal-dual algorithm that finds

this worst-case distribution efficiently, and this algorithm is then implemented in two computational experiments

involving both the single-vehicle and multi-vehicle TSP in Section 5.

1.1 Related work

This paper describes a continuous approximation model that uses robust optimization to describe the worst-case

demand distribution for the travelling salesman problem; this model is then applied to solve a districting problem

that assigns vehicles to pre-specified zones in a region. As such, there are essentially three bodies of literature from

which it stems.

1.1.1 Continuous approximation models

This paper is concerned with a continuous approximation model for a transportation problem, and is therefore

philosophically similar to (for example) [22], which analytically determines trade-offs between transportation and

inventory costs, [54], which shows how to route emergency relief vehicles to beneficiaries in a time-sensitive manner,

and [57], which describes a simple geometric model for determining the optimal mixture of a fleet of vehicles
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Figure 1: Figure 1a shows a Wasserstein distance problem between two univariate distributions µ1 and µ2. Figures
1b-1d show that a Wasserstein mapping can be thought of as an infinite-dimensional generalization of a bipartite
matching; here µ1 and µ2 are shown in 1b and 1c, and 1d shows a bipartite matching between a large number of
samples collected from µ1 and µ2. Figures 1e-1g show an interpretation of a Wasserstein distance problem when
µ1 is a smooth density and µ2 is atomic. The two distributions are shown in 1e, and 1f shows the solution to an
assignment problem between a large number of samples from µ1 and the atomic distribution µ2; a side consequence
is that the Lagrange multipliers of this assignment induce a partition of the region R, each of whose cells are
associated with one of the elements of µ2. Figure 1g shows this partition together with the atomic distribution µ2;
each cell contains 1/n of the mass of the density, which is to be transported to the point contained within it. By
using previous results [31], these dashed curves are computationally easy to compute. If we let Ri denote the cell
associated with each point xi in the atomic distribution and f denote the density, then the Wasserstein distance is∑
i

s
Ri
f(x)‖x− xi‖ dA.
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that perform distribution. The basic premise of the continuous approximation paradigm is that one replaces

combinatorial quantities that are difficult to compute with simpler mathematical formulas, which (under certain

conditions) provide accurate estimations of the desired quantity [27, 46]. Such approximations exist for many

combinatorial problems, such as the travelling salesman problem [14, 42], facility location [50, 53, 70], and any

subadditive Euclidean functional such as a minimum spanning tree, Steiner tree, or matching [74, 80, 81]. In our

computational districting experiment, an approximation of this kind is used as the first level of an optimization

problem in which we design service zones that are associated with different vehicles.

1.1.2 Districting problems in vehicle routing

The primary application of the theory derived in this paper is in the design of districts for allocating a fleet of

vehicles to visit a collection of customers when demand is uncertain. The problem of designing such districts is

a foundational one in the continuous approximation literature, as can be seen in [65] or Chapter 4 of the seminal

book [35], for example. The most common way that uncertainty is represented is by assuming that demand

follows a known probability density function (which is often further assumed to be uniform); this density then

informs the districting decision in some way. To give a few examples, [44] uses a multiplicatively-weighted Voronoi

partitioning scheme in which district sizes are determined by a set of scalar weights associated with the vehicles,

[29] uses so-called “ham sandwich cuts” to recursively partition the region, and [68] uses a “disk model” that allows

for explicit control of district sizes and implicit control of district shapes. Further additional examples from the

robotics community include [34, 39, 71, 72], which all use various forms of the Voronoi paradigm (such as additive,

quadratic, or logarithmic weighting schemes) to partition a geographic region, and place a particular emphasis on

“decentralizing” the means by which partitions are constructed.

An alternative method to the preceding continuous models is to instead assume that demand is present on a

known graph, and that vertices on the graph have probability weights. This is the approach taken by [52], which

models the districting problem as a two-stage stochastic optimization program with recourse, by [13], which uses a

three-phase procedure that aggregates data points into compact districts using a mixed-integer goal program, and

by [45], which uses a steady-state spatial queueing model to simultaneously reason about the optimal locations of

emergency response stations and the territories they serve. It is also possible to apply principles from continuous

approximation theory to design districts in graph-based models, provided some basic geometric information is

available; this is the case in [61, 62], which use the square-root approximation of [14] in conjunction with a graph-

based model, and which show good performance when the inputs are known to be uniformly distributed over a

geometric domain. Section 5.2 of this paper also shows how to apply a continuous approximation scheme to a
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Figure 2: The above point sets in the unit square are extremely clustered and one would expect that their TSP tour
should be short. However, because their sample mean and covariance matrix are the same as that of the uniform
distribution, any robust methodology that uses only mean and covariance information will fail to recognize the
clustering, thereby incurring significant overestimation.

heterogeneous road network, namely, a map of Los Angeles County, to a set of inputs that are non-uniformly

distributed.

In practice, one often does not have sufficient information (namely, a probability distribution defined on an entire

geographic region) to apply the preceding models. For example, in recent years, numerous start-up companies have

emerged that provide “last-minute” delivery of food and groceries such as Good Eggs, DoorDash, BiteSquad, and

Caviar [1, 2, 3, 4], and such companies must make high-level strategic allocation decisions without an extensive set

of historical data. Another example arises in threat detection and surveillance, in which case a set of vehicles begins

with some a priori information about the distribution of targets and one seeks a policy for routing these vehicles that

takes new information into account as it becomes available [43]. The problem of designing districts in such a data-

driven fashion (i.e. when one has an ambiguous distribution setting) is considerably less understood, although the

paper [30] describes one approach for doing so when one knows the mean and covariance of the demand distribution.

A major deficiency of this approach, which motivates our present work, is its inability to respond to clustering or

even mere multi-modality in data points. For example, Figure 2 shows a data set that is very clustered, and whose

TSP tour should therefore be short relative to (for example) a uniform distribution. However, this clustered data

set actually has precisely the same mean and covariance matrix as the uniform distribution; such an approach

therefore frequently leads to an over-conservative solution (or more generally, a solution that is not faithful to the

true unknown demand distribution), even when a large number of samples is available. This over-conservatism is

actually noted in Figure 10 of [30].
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1.1.3 Robust optimization and vehicle routing

In most models of the robust VRP, one has a pre-defined ambiguity region and seeks a set of routes that is as

good as possible with respect to all of the outcomes; this ambiguity region is usually described as a polyhedral

set [5, 49, 83], although the recent paper [6] adopts a “robust mean-variance” approach that minimizes a weighted

sum of the average cost and the variance of a route when sampled over many scenarios. In our problem, we are

concerned with robustness in the distributional sense [26]: we seek the spatial distribution of demand for which the

expected cost of a tour is as high as possible, while remaining consistent with some observed data samples or some

parameters derived thereof.

By far, the most common parameters used in distributionally robust problems (in general domains, not just

those arising in transportation) are the support and the first and second moments of the sample distribution

[37, 73, 92], and the papers [33, 48] additionally make use of bounds on “directional deviation measures” that isolate

stochastically independent components. We have previously made use of first and second moment information for

the distributionally robust VRP in the paper [30]; one major drawback of this method is an inability to detect

clustering, as we have already noted in the preceding section. In order to remedy this, we propose the use of

the Wasserstein distance as a means of defining the uncertainty region of demand distributions. The Wasserstein

distance is very commonly used in machine learning and statistics [23, 55, 69, 78], and is also mentioned in the

context of robust optimization in [40] for its relationship with the Prokhorov metric. To our knowledge, the first

direct applications of the Wasserstein distance to optimization problems have occurred very recently in [90, 91]; the

former uses Carathéodory-type results to reduce the support set of an infinite-dimensional optimization problem to

a finite set and the latter uses the Wasserstein distance as one of several statistical metrics to define risk measures

for portfolios. Even more recently, the paper [41] shows how to apply complementary slackness principles to solve a

very large family of distributionally robust optimization problems subject to Wasserstein distance constraints; their

use of convex duality theory is closely related to our own derivation in Section 3.

For general problems (i.e. not those related specifically to vehicle routing), a variety of other statistical

metrics (or pseudo-metrics) have been used previously for solving distributionally robust optimization problems;

such metrics include the Kullback-Leibler divergence, Hellinger distance, χ2-distance, total variation distance, or

Kolmogorov-Smirnov statistic. A few examples follow:

• The paper [15] solves a variety of robust linear programs using φ-divergences, a wide class of pseudo-metrics

to which several of the aforementioned quantities belong.

• The paper [16] gives a highly flexible framework that builds ambiguity sets using classical statistical hypothesis
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tests, including the χ2 test and the Kolmogorov-Smirnov test,

• The paper [25] computes robust financial portfolios using the Kullback-Leibler divergence.

• The paper [56] shows how to solve robust dynamic programs whose distributional ambiguity sets are defined

using the Kullback-Leibler divergence.

• The paper [58] proposes a robust lot-sizing model whose distributional ambiguity set is defined via the χ2

goodness-of-fit test.

There are three reasons why the Wasserstein distance is a particularly appropriate choice for our problem of interest:

first, the Wasserstein distance allows one to directly make comparisons between a discrete distribution (such as the

empirical distribution consisting of a collection of data points) and a continuous distribution, as we have previously

noted in Figure 1; this it not possible in (for example) the Kullback-Leibler divergence, the Hellinger distance,

or the total variation distance. Secondly, the Wasserstein distance is in a sense “inherited” from the Euclidean

distance, inasmuch as the distance between two distributions is defined as an integral of Euclidean distances. Since

we are concerned with obtaining a probability distribution whose induced TSP tour is as long as possible (in an

asymptotic limit as many samples are taken), and a TSP tour is also measured using Euclidean distances, the

Wasserstein distance is a particularly appropriate choice. The third reason is purely practical: it turns out that

the ambiguity set of distributions characterized by a Wasserstein distance threshold gives a very concise, closed-

form expression for the worst-case distribution for our problem. As we will later show in Section 3.3, a fourth a

posteriori justification for the use of the Wasserstein metric is that the worst-case distribution that one obtains for

this problem is closely related to that of the classical geographical gravity model, which arises in many models of

spatial interaction.

1.2 Notational conventions

Our notational conventions throughout this paper are as follows: integrals over regions in R2 are denoted with the

double integral sign
s
dA. The diameter of a region R, denoted diam(R), is the largest possible distance between

two points in R, supx,y∈R ‖x − y‖. The vector consisting of all 1’s is written e, whose dimension will always be

clear from context, and the indicator function of a particular condition and the Dirac delta function are written as

1(·) and δ(·) respectively. The Wasserstein distance between two distributions is written D(·, ·) and is defined in

the next section. We will commit a slight abuse of notation and use the expression TSP(x1, . . . , xn) to represent

both the shortest tour that goes through a set of points as well as the length of that shortest tour. Finally, for any

univariate function f(x), we say that f(x) ∈ o(g(x)) as x→∞ if limx→∞ f(x)/g(x) = 0.
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2 Preliminaries

In order to retain mathematical rigor, we find the following results useful; the first two items are simplified from

[86]:

Definition 1 (Wasserstein distance). Let µ1 and µ2 denote two probability measures defined on a compact planar

region R. The Wasserstein distance between µ1 and µ2, written D(µ1, µ2), is defined as

D(µ1, µ2) := inf
π∈Π(µ1,µ2)

∫∫∫∫
R×R

‖x− y‖ dπ(x, y) , (1)

where Π(µ1, µ2) is defined as the set of all probability measures on R×R whose marginals are µ1 and µ2, that is,

the set of all probability measures that satisfy π(A×R) = µ1(A) and π(R×B) = µ2(B) for all measurable subsets

A,B ⊂ R.

The Wasserstein distance can be thought of as a generalization of an assignment problem: for example, when

µ1 and µ2 are discrete distributions consisting of n points each with equal mass, the Wasserstein distance between

the two is simply computed as the cost of a bipartite matching (multiplied by a normalization term of 1/n). This

interpretation is suggested in Figure 1.

Our notion of distributional robustness relies on the following famous theorem, originally stated in [14] and

further developed in [80, 81], which relates the length of a TSP tour of some points with the distribution from

which they were sampled:

Theorem 2 (BHH Theorem). Suppose that X = {X1, X2, . . . } is a sequence of random points i.i.d. according

to a probability density function f(·) defined on a compact planar region R. Then with probability one, the length

TSP(X) of the optimal travelling salesman tour through X satisfies

lim
N→∞

TSP(X)√
N

= β
x

R

√
fc(x) dA

where β is a constant and fc(·) represents the absolutely continuous part of f(·).

It is additionally known that 0.6250 ≤ β ≤ 0.9204 and estimated that β ≈ 0.7124; see [9, 14].

The following classical result from [64] will be useful in confirming the existence of an optimal solution of the

problem that we will construct:

Theorem 3 (Lagrange Duality). Let φ be a real-valued convex functional defined on a convex subset Ω of a vector

space X , and let G be a convex mapping of X into a normed space Z. Suppose there exists an x1 such that G(x1) < θ,
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where θ is the zero element, and that inf{φ(x ) : x ∈ Ω, G(x ) ≤ θ} is finite. Then

inf
x∈Ω, G(x )≤θ

φ(x ) = max
z∗≥θ

inf
x∈Ω

φ(x ) + 〈G(x ), z∗〉

and the maximum on the right is achieved by some z∗0 ∈ Z∗ such that z∗0 ≥ θ, where Z∗ denotes the dual space of Z

and 〈·, ·〉 denotes the evaluation of a linear functional, i.e. z∗(G(x )). If the infimum on the left is achieved by some

x0 ∈ Ω, then 〈G(x0), z∗0 〉 = 0, and x0 minimizes φ(x ) + 〈G(x ), z∗0 〉 over all x ∈ Ω.

Finally, the Wasserstein distance between a discrete distribution consisting of points {x1, . . . , xn} with uniform

probabilities 1/n and a continuous probability density function f defined on a compact planar region R can be

obtained by solving the following infinite-dimensional optimization problem:

minimize
I1(·),...,In(·)

n∑
i=1

x

R

‖x− xi‖f(x)Ii(x) dA s.t.

x

R

f(x)Ii(x) dA = 1/n ∀i

n∑
i=1

Ii(x) = 1 ∀x ∈ R

Ii(x) ≥ 0 ∀i, ∀x ∈ R ;

here the value Ii(x) simply describes the amount of the distribution at point x ∈ S that should be moved to point

xi. The lemma below summarizes some basic results on the Wasserstein distance between a probability density and

an empirical distribution:

Lemma 4. Let f denote a probability density function on a compact planar region R and let f̂ denote an atomic

distribution consisting of distinct points x1, . . . , xn ∈ R each having probability mass 1/n. Then the following

statements are true:

1. The Wasserstein distance D(f, f̂) is the optimal objective value to the concave maximization problem

maximize
λ∈Rn

x

R

f(x) min
i
{‖x− xi‖ − λi} dA s.t. (2)

eTλ = 0 ,

where e ∈ Rn denotes a vector whose entries are all 1’s.
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2. For any λ, a valid supergradient [20] for the objective function of (2) is the vector g ∈ Rn defined by setting

gi = −
x

Ri

f(x) dA ,

where each Ri is a connected piecewise hyperbolic region characterized by

Ri = {x ∈ R : ‖x− xi‖ − λi ≤ ‖x− xj‖ − λj ∀j 6= i} ;

that is, for any other λ
′
, we have

x

R

f(x) min
i
{‖x− xi‖ − λ

′

i} dA ≤
x

R

f(x) min
i
{‖x− xi‖ − λi} dA+ gT (λ

′
− λ) .

3. If λ∗ is a maximizer of (2), then an optimal Wasserstein mapping between f and f̂ is obtained by defining

R∗i =
{
x ∈ R : ‖x− xi‖ − λ∗i ≤ ‖x− xj‖ − λ∗j ∀j 6= i

}
for each i and transporting all of the mass of each R∗i to its associated point xi.

4. If f(x) > 0 for all x ∈ R, then there exists a unique maximizer λ∗.

Proof. Statement 1 is a well-known special case of the Kantorovich duality theorem; see for example Theorem 1.3 of

[86] or [12, 31, 85] for specific details. In addition, the economic interpretation of the regions R∗i relative to the dual

variables λ∗i can be found in [32]; in a nutshell, the sub-regions R∗i that characterize the mapping are equivalent to

market regions induced by a mill pricing scheme at each of the points xi. Proofs of statements 2-4 are routine and

can be found in Section A of the Online Supplement.

3 Worst-case distributions with Wasserstein distance constraints

The input to our problem is a set of distinct demand points x1, . . . , xn in a compact planar region R, which we

assume are sampled from some (unknown) distribution function f . By rearranging the terms of Theorem 2, we can

write

TSP(x1, . . . , xn) = β
√
n

x

R

√
f(x) dA+ o(

√
n)
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with probability one as n → ∞. Since β is a constant and
√
n is (presumably) not related to the distribution f ,

we therefore conclude that the “worst” distribution whose induced TSP workload is as large as possible (subject to

whatever other constraints might be present) is precisely that distribution that maximizes
s
R

√
f(x) dA.

We now let f̂ denote the empirical distribution on these n points xi. We will search through all distributions f

whose Wasserstein distance to f̂ is sufficiently small, i.e. where D(f, f̂) ≤ t; here D(·, ·) is the Wasserstein distance

from Definition 1 and t is a parameter that will be discussed in Section 4.2. The problem of finding the worst-case

TSP distribution, subject to the Wasserstein distance constraint, is then written as the infinite-dimensional convex

optimization problem

maximize
f

x

R

√
f(x) dA s.t. (3)

D(f, f̂) ≤ t
x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

This is our problem of interest throughout this paper. We will embed f in the Banach space L1(R), hereafter

abbreviated simply to L1, which consists of all functions that are absolutely Lebesgue integrable on R.

3.1 Comparison with other approaches

The earlier paper [30] considers a problem closely related to (3) in which one has constraints on the mean and

covariance of f instead of the constraint on D(f, f̂); that problem is written as

maximize
f

x

R

√
f(x) dA s.t. (4)

x

R

xf(x) dA = µ

x

R

xxT f(x) dA � Σ + µµT

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

Since it is well-known (e.g. Section 2 of [28]) that the Wasserstein distance between the empirical distribution f̂

and the true distribution f converges to zero with probability one as n→∞, it is not surprising that our proposed

formulation (3) is guaranteed to make better use of sample points as they become available, unlike the problem (4)

11



written above:

Theorem 5. Let X = {X1, X2, . . . } be a sequence of random points i.i.d. according to an absolutely continuous

probability density function f̄(·) defined on a compact planar region R. For any positive integer n, let f̂n denote

the empirical distribution on points {X1, . . . , Xn}. Then with probability one there exists a sequence {t1, t2, . . . },

converging to 0, such that the optimal objective value of the problem

maximize
f

x

R

√
f(x) dA s.t. (5)

D(f, f̂n) ≤ tn
x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R

approaches the ground truth (i.e.
s
R

√
f̄(x) dA) as n→∞.

Proof. See Section B of the Online Supplement.

3.2 Structure of the solution to (3)

To begin, we apply Lemma 4 to express the distance constraint D(f, f̂) ≤ t in (3) differently, obtaining the equivalent

formulation

maximize
f∈L1

x

R

√
f(x) dA s.t. (6)

x

R

f(x) min
i
{‖x− xi‖ − λi} dA ≤ t ∀λ : eTλ = 0

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

This is an infinite-dimensional problem with an infinite-dimensional constraint space and is therefore best addressed

using Theorem 3; before doing so, we find the following result useful:

Lemma 6. There exists a unique optimal solution f∗ to problem (6), and f∗(x) > 0 for all x ∈ R.

Proof. The fact that the optimal solution is unique (provided one exists) is an immediate consequence of the fact

that the square root function in the integrand of (6) is strictly concave. To prove existence, let {f j} denote a

sequence of feasible inputs to (6) whose objective values converge to a supremum. For each f j , let λj denote a
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value of λ that induces the optimal Wasserstein mapping between f j and f̂ as described in Lemma 4, i.e. that

solves problem (2). It is easy to verify that the iterates λj lie in the compact set Λ, defined by

Λ :=
{

λ ∈ Rn : eTλ = 0, λi ≤ diam(R)∀i
}
,

because any λ lying outside Λ would force some sub-regions to be empty. Therefore, the sequence {λj} must have a

convergent subsequence with a limit λ∗, inducing a partition R∗1, . . . , R∗n as in statement 2 of Lemma 4 that satisfies
s
R∗

i
f(x) dA = 1/n for all i. Standard arguments then show that the true worst-case distribution f∗ is precisely

the solution to the problem

maximize
f∈L1

x

R

√
f(x) dA s.t. (7)

n∑
i=1

x

R∗
i

‖x− xi‖f(x) dA ≤ t

x

R∗
i

f(x) dA = 1
n
∀i

f(x) ≥ 0 ∀x ∈ R

(this is an immediate consequence of the fact that the optimal objective cost to (7) varies continuously as the vector

λ∗, which defines the partition R∗1, . . . , R
∗
n, is perturbed). This problem has a finite-dimensional constraint space,

and it is routine to apply Theorem 3 to (7) to derive the dual problem

minimize
ν≥0

1
4

n∑
i=1

x

R∗
i

1
ν0‖x− xi‖+ νi

dA+ ν0t+ 1
n

(ν1 + · · ·+ νn) s.t. (8)

ν0‖x− xi‖+ νi ≥ 0 ∀x ∈ R∗i ∀i

whereby we conclude that the optimal solution f∗ to (7) must take the form

f∗(x) = 1
4(ν∗0‖x− xi‖+ ν∗i )2 (9)

on each sub-region R∗i . This satisfies f(x) > 0 for all x ∈ R and completes the proof.

The functional form for the optimal f∗ can in fact be simplified further:
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Theorem 7. The worst-case distribution that solves problem (6), and therefore (3), takes the form

f∗(x) = 1
4(ν∗0 mini{‖x− xi‖ − λ∗i }+ ν∗1 )2 (10)

with ν∗0 , ν∗1 ≥ 0 and eTλ∗ = 0.

Proof. The major difference between the form of f∗ as written above and the form described in (9) is the fact

that the expression in (9) is not guaranteed to vary continuously as we move from one region R∗i to another; the

expression (10) is continuous by inspection. We first note that the constraint

x

R

f(x) min
i
{‖x− xi‖ − λi} dA ≤ t ∀λ : eTλ = 0

can be restricted to merely the compact set

Λ :=
{

λ ∈ Rn : eTλ = 0, λi ≤ diam(R)∀i
}

because, if λi > diam(R) for some i, then ‖x− xi‖ − λi < 0 for all x and the constraint is obviously satisfied. We

will apply Theorem 3 where X = L1, Ω is the subset of the non-negative orthant in L1 that integrates to 1, and

Z consists of all continuous functions on Λ, i.e. Z = C (Λ) (note that Z satisfies the interior point requirement of

Theorem 3 because inequalities are simply taken elementwise in Λ). We define φ(x ) : X → R and G(x ) : X → Z as

the maps sending

f 7→
x

R

√
f(x) dA

and

f 7→
x

R

f(x) min
i
{‖x− xi‖ − λi} dA− t

respectively, where the right-hand side of the second expression is regarded as a continuous function of λ. The dual

space Z∗ consists of all regular signed Borel measures on Λ (this is the Riesz representation theorem; see e.g. [77]).

However, Lemma 6 shows that f∗(x) > 0 on R, and therefore the optimal λ∗ that solves problem (2) is unique by

statement 4 of Lemma 4. This implies that G(x ) =
s
R f(x) mini{‖x− xi‖ − λi} dA− t < 0 whenever λ 6= λ∗, and

therefore, since 〈G(x ), z∗〉 = 0 at optimality, it must be the case that z∗ is zero everywhere except for (possibly at)

λ∗. Thus, we conclude that z∗ is an evaluation functional at λ∗ (multiplied by a scalar), so that

〈G(x ), z∗〉 = q∗

(
x

R

f(x) min
i
{‖x− xi‖ − λ∗i } dA− t

)
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for all feasible f , where q∗ ≥ 0 is some scalar. Theorem 3 then says that f∗ must also be the solution to the problem

maximize
f∈L1

x

R

√
f(x) dA+ q∗

(
x

R

f(x) min
i
{‖x− xi‖ − λ∗i } dA− t

)
s.t.

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R

or equivalently, the problem

maximize
f∈L1

x

R

√
f(x) dA s.t.

x

R

f(x) min
i
{‖x− xi‖ − λ∗i } dA ≤ t

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

It is routine to verify that the constraint
s
R f(x) dA = 1 can be replaced with an inequality (in a nutshell, this is

because we are allowed to make f(x) as large as we like when ‖x − xi‖ − λ∗i ≤ 0 for some index i). Thus, we can

apply Theorem 3 again to the problem

maximize
f∈L1

x

R

√
f(x) dA s.t.

x

R

f(x) min
i
{‖x− xi‖ − λ∗i } dA ≤ t

x

R

f(x) dA ≤ 1

f(x) ≥ 0 ∀x ∈ R

to derive the 2-dimensional dual problem

minimize
ν0,ν1

x

R

1
4(ν0 mini{‖x− xi‖ − λ∗i }+ ν1)

dA+ ν0t+ ν1 s.t. (11)

ν0 min
i
{‖x− xi‖ − λ∗i }+ ν1 ≥ 0 ∀x ∈ R

ν0, ν1 ≥ 0 ;
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the optimality conditions of (11) describe precisely the desired form of f∗, which completes the proof.

Remark 8. Many problems in distributionally robust optimization have objective functions and constraints that

are linear in terms of the unknown distribution f (for example, the expectation operator). For such problems,

Carathéodory-type theorems imply that the worst-case distribution will consist of a finite number of points, even

when one uses ambiguity sets defined by the Wasserstein distance; see for example [90]. As a consequence of this

fact, it is sometimes the case that one can determine the worst-case distribution using only one iteration of a

finite-dimensional optimization problem; this turns out to hold (for the Wasserstein metric) in [41, 91], for example.

Because of the non-linearity in the objective, our worst-case distribution f∗ is smooth and requires an iterative

method to solve, which we will describe in Section 4.

3.3 Variations and extensions

Uneven data weights: By definition, the empirical distribution f̂ of the points x1, . . . , xn consists of a collection

of n atomic masses at each point, each having mass of 1/n. It is easy to envision scenarios in which one

desires uneven weights: for example, one might use an exponential weighting scheme to emphasize more

recent measurements, or one might use different weights to distinguish between activity on weekends versus

weekdays (or other seasonal effects). If we require that point xi have a mass qi associated with it, then we can

find the worst-case distribution f∗ by solving problem (6), with the one change that we replace the restriction

that eTλ = 0 with a restriction that qTλ = 0 instead; the form of f∗ is otherwise unchanged.

Capacitated vehicles: Our approach can also be adapted to solve problems when vehicles have capacities and

originate from a central depot located at the origin. To do so, suppose that each vehicle can visit c destinations

before returning to the depot. The following theorem from [51] provides useful upper and lower bounds for

the cost of a capacitated vehicle routing tour:

Theorem 9. Let X = {x1, . . . , xn} be a set of demand points in the plane serviced by a fleet of vehicles with

capacity c that originate from a single depot located at the origin. The length of the optimal set of capacitated

VRP tours of X, written VRP(X), satisfies

max
{

2
c

n∑
i=1
‖xi‖,TSP(X)

}
≤ VRP(X) ≤ 2

⌈
|X|
c

⌉
·
∑n
i=1 ‖xi‖
|X|

+ (1− 1/c) TSP(X) . (12)

The probabilistic version of this, as derived in Section C of the online supplement, uses the BHH Theorem
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(Theorem 2 of this paper) to characterize the length of the TSP term:

√
n ·max

{
2
s

x

R

‖x‖f(x) dA, β
x

R

√
fc(x) dA

}
> VRP(X) >

√
n ·

(
2
s

x

R

‖x‖f(x) dA+ β
x

R

√
fc(x) dA

)
,

(13)

where we set s = c/
√
n and we have adopted the notation “>” to denote an “approximate” inequality, both

of which are also explained in Section C. It is immediately obvious that the upper and lower bounds are

within a factor of 2 of one another. Applying the same analysis as in Section 3, the worst-case distribution

that maximizes the right-hand side of (13) subject to a Wasserstein distance constraint takes the form

f∗(x) = 1
4(ν∗0 mini{‖x− xi‖ − λ∗i }+ ν∗1 − 2

s‖x‖)2 ;

its level sets, i.e. those curves for which ν∗0 (‖x − xi‖ − λ∗i ) + ν∗1 − 2
s‖x‖ is constant, consist of piecewise

components of so-called Cartesian ovals [63].

Higher dimensions: The BHH Theorem (Theorem 2) is also applicable in higher dimensions; the general form

says that, when the service region R belongs to Rd, we have

lim
N→∞

TSP(X)
N (d−1)/d = βd

y

R

fc(x)(d−1)/d dV ,

for dimension-dependent constants βd. Applying the same analysis as in Section 3, the worst-case distribution

that maximizes the right-hand side of the above, subject to a Wasserstein distance constraint, takes the form

f∗(x) = (d− 1)d−1

dd
· 1
(ν∗0 mini{‖x− xi‖ − λ∗i }+ ν∗1 )d .

The gravity model One of the salient attributes of the worst-case distribution f∗ as established in Theorem 7

is that the presence of the square root in the objective of (3) establishes an inverse proportionality between

the optimal solution f∗(x) and the square of the distance to one of the data points xi (with some additional

additive and multiplicative weights from the dual variables ν∗ and λ∗). This same inverse proportionality

is shared by the classical geographic gravity model [7, 76, 84], which is “the most common formulation of

the spatial interaction method” [76] and has historically been used to model a wide variety of demographic

phenomena such as population migration [82], spatial utility for retail stores [75], and trip distributions

between cities [88]. This would appear to lend credibility to our solution f∗, inasmuch as it takes a form that

closely matches that of distributions for related problems.
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4 Solving (3) efficiently

The preceding section established that the worst-case distribution that solves (3) can be expressed in terms of

optimal vectors λ∗ ∈ Rn and ν∗ ∈ R2. This section describes a simple method for calculating λ∗ and ν∗ efficiently

by way of an analytic center cutting plane method [19]. Recall that our problem of interest, as written in (6), is

maximize
f∈L1

x

R

√
f(x) dA s.t.

x

R

f(x) min
i
{‖x− xi‖ − λi} dA ≤ t ∀λ : eTλ = 0

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R ;

thus, it is certainly true that if we fix any specific value λ̄ such that eT λ̄ = 0, then the following problem is a

relaxation of (6) and hence has an objective value that is at least as large as that of (6):

maximize
f∈L1

x

R

√
f(x) dA s.t.

x

R

f(x) min
i
{‖x− xi‖ − λ̄i} dA ≤ t

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

It is natural to consider the problem of selecting the particular value of λ̄ that makes the above relaxation as tight

as possible. In fact, our proof of Theorem 7 says that there exists a particular value of λ̄, namely λ∗, such that the

above relaxation is actually tight; in other words, the optimal distribution f∗ is the solution to the problem

maximize
f∈L1

x

R

√
f(x) dA s.t.

x

R

f(x) min
i
{‖x− xi‖ − λ∗i } dA ≤ t

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R
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for an appropriately chosen vector λ∗. Thus, the problem of finding λ∗ actually reduces to the optimization problem

minimize
λ∈Rn

max
f∈Ω(λ)

x

R

√
f(x) dA s.t. (14)

eTλ = 0

λi ≤ diam(R) ∀i

where Ω(λ) is the subset of L1 consisting of all functions f such that

x

R

f(x) min
i
{‖x− xi‖ − λi} dA ≤ t

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

Of course, the inner problem of maximizing f given λ is easily solved because the gradient vector for the dual

problem

minimize
ν0,ν1

x

R

1
4(ν0 mini{‖x− xi‖ − λi}+ ν1)

dA+ ν0t+ ν1 s.t. (15)

ν0 min
i
{‖x− xi‖ − λi}+ ν1 ≥ 0 ∀x ∈ R

ν0, ν1 ≥ 0 ,

as derived in the proof of Theorem 7, can be computed explicitly. Thus, we simply require a better understanding

of problem (14):

Lemma 10. The (outer) objective function of problem (14) is quasiconvex, i.e. its sub-level sets are convex.

Proof. For notational compactness, let G(λ) denote the objective function of (14). Recall [21] that G(λ) is quasi-

convex if and only if, for any λ1,λ2 and any θ ∈ [0, 1], we have

G(θλ1 + (1− θ)λ2) ≤ max{G(λ1), G(λ2)} .

Let λ̄ = θλ1 + (1− θ)λ2 and let f̄ denote the distribution that maximizes
s
R

√
f(x) dA over all f ∈ Ω(λ̄); it will
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suffice to prove that either f̄ ∈ Ω(λ1) or f̄ ∈ Ω(λ2). By definition, we have

x

R

f̄(x) min
i
{‖x− xi‖ − λ̄i} dA ≤ t ,

and the left-hand side of the above inequality is a concave function in λ̄ (if we fix the function f̄). Thus, if we let

S denote the line segment joining λ1 and λ2 (which, of course, contains λ̄), we see that the problem

minimize
λ∈S

x

R

f̄(x) min
i
{‖x− xi‖ − λi} dA

must realize its minimizer on the boundary of S (since we are minimizing a concave function), i.e. the point λ1 or

λ2. Therefore, it must be the case that
s
R f̄(x) mini{‖x−xi‖−λ1

i } dA ≤ t or
s
R f̄(x) mini{‖x−xi‖−λ2

i } dA ≤ t,

which completes the proof.

The following theorem describes a cutting plane oracle for the outer problem (14):

Theorem 11. Let λ̄ satisfy eT λ̄ = 0 and let f̄ be the solution to the inner problem of (14) (i.e. f̄ maximizes
s
R

√
f(x) dA over all f ∈ Ω(λ̄)). Then the vector ḡ ∈ Rn defined by setting

ḡi = −
x

R̄i

f̄(x) dA

for all i, where R̄i is defined as

R̄i =
{
x ∈ R : ‖x− xi‖ − λ̄i ≤ ‖x− xj‖ − λ̄j ∀j 6= i

}
,

defines a valid cutting plane for problem (14); that is, if ḡT (λ
′
−λ̄) ≤ 0 for some λ

′
satisfying eTλ

′
= 0, and f ′ is the

solution to the inner problem of (14) associated with λ
′
, then maxf∈Ω(λ

′ )
s
R

√
f(x) dA ≥ maxf∈Ω(λ̄)

s
R

√
f(x) dA.

Proof. Statement 2 of Lemma 4 says that, for any other λ
′
, the assumption that ḡT (λ

′
− λ̄) ≤ 0 yields

x

R

f̄(x) min
i
{‖x−xi‖−λ

′

i} dA ≤
x

R

f̄(x) min
i
{‖x−xi‖− λ̄i} dA+ ḡT (λ

′
− λ̄) ≤

x

R

f̄(x) min
i
{‖x−xi‖− λ̄i} dA ≤ t

which implies that f̄ ∈ Ω(λ
′
) and therefore that maxf∈Ω(λ

′ )
s
R

√
f(x) dA ≥ maxf∈Ω(λ̄)

s
R

√
f(x) dA as desired.

We now have a fast method for generating cutting planes associated with problem (14) and thereby recovering
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the distribution f∗ that solves problem (3); see Algorithm 1 for a formal description.

Input: A compact, planar region R containing a set of distinct points x1, . . . , xn which are interpreted as an
empirical distribution f̂ , a distance parameter t, and a tolerance ε.

Output: An ε-approximation of the distribution f∗ that maximizes
s
R

√
f(x) dA subject to the constraint

that D(f, f̂) ≤ t.
/* This is a standard analytic center cutting plane method applied to problem (14), which

has an n-dimensional variable space. */
Set UB =∞ and LB = −∞;
Set Λ = {λ ∈ Rn : eTλ = 0, λi ≤ diam(R)∀i};
while UB− LB > ε do

Let λ̄ be the analytic center of Λ;
/* Build an upper bounding f̄ for the original problem (3). */
Let ν̄0, ν̄1 be the solution to problem (15) with λ̄ as an input;
Let f̄(x) = 1

4 (ν̄0 mini{‖x− xi‖ − λ̄i}+ ν̄1)−2;
Let UB =

s
R

√
f̄(x) dA;

/* Build a lower bounding f̃ that is feasible for (3) by construction. */
Let R̄i = {x ∈ R : ‖x− xi‖ − λ̄i ≤ ‖x− xj‖ − λ̄j ∀j 6= i} for i = {1, . . . , n};
Let ν̃ ∈ Rn+1 be the solution to problem (8) with inputs R̄1, . . . , R̄n;
Let f̃ be defined by setting f̃(x) = 1

4 (ν̃0‖x− xi‖+ ν̃i)−2 on each R̄i;
Let LB =

s
R

√
f̃(x) dA;

Let gi = −
s
R̄i
f̄(x) dA for i = {1, . . . , n};

Let H = {λ ∈ Rn : gTλ ≥ gT λ̄} and set Λ = Λ ∩H;
end
return f̃ ;

Algorithm 1: Algorithm WorstTSPDensity takes as input a compact planar region containing a set of n
distinct points, a distance threshold t, and a tolerance ε.

4.1 Districting

When one has multiple vehicles available to perform service, a natural strategy for allocating them – especially in

the presence of uncertainty – is to use a districting strategy in which we divide the region R into sub-regions, then

associate each vehicle with one of these sub-regions [29, 45, 52, 71]. In the context of this paper, the most natural

procedure would be to partition R into districts D1, . . . , Dm and calculate the worst-case workloads associated with
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Figure 3: Two views of an example of f∗(x) as described in Theorem 12, where there are n = 10 points and the
sub-region Dj is the lower quarter of the unit square. At left, the shading represents f∗ and the dashed lines
indicate the optimal Wasserstein map between f∗ and f̂ ; the Dirac delta functions are indicated by the thick black
circles in both images.

each district Dj by solving the problem

maximize
f∈L1

x

Dj

√
f(x) dA s.t. (16)

x

R

f(x) min
i
{‖x− xi‖ − λi} dA ≤ t ∀λ : eTλ = 0

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

for each sub-region Dj (this is identical to (6) except for the domain of integration in the objective). The worst-case

distribution associated with each district Dj is characterized as follows:

Theorem 12. The worst-case distribution that solves problem (16) takes the form

f∗(x) =
[

1
4(ν∗0 mini{‖x− xi‖ − λ∗i }+ ν∗1 )2

]
1(x ∈ Dj) +

n∑
i=1

p∗i δ(x− xi)

with ν∗0 , ν∗1 ≥ 0, eTλ∗ = 0, and 0 ≤ p∗i ≤ 1. Moreover, we have p∗i = 0 whenever xi ∈ Dj.

Proof. This is almost identical to the proof of Theorem 7 and we omit it here for brevity. The intuition behind the

Dirac delta components is not difficult: if any mass of f∗ is located outside district Dj , then it does not contribute

to the objective and therefore should contribute as little as possible towards the Wasserstein distance constraint.

See Figure 3 for an example of such a distribution.
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In Section 5.2, we will apply the preceding result to a computational experiment in which we seek to divide a

service region into districts in such a way as to minimize the maximum workload over any district.

4.2 Selecting the distance parameter t

From the preceding discussion, it is clear that the parameter t in the Wasserstein distance constraint D(f, f̂) ≤ t

from our original problem (3) has a significant impact on the problem solution. Of course, in practice, we do not

have any way of a priori calculating an exact value of t. However, in order to estimate t in a data-driven fashion,

the following result is helpful:

Theorem 13. Let f̂1 and f̂2 denote empirical distributions associated with two sets of samples of n points from a

distribution f . Then
1
2ED(f̂1, f̂2) ≤ ED(f, f̂1) ≤ ED(f̂1, f̂2) .

Proof. This is due to [28], and follows from Jensen’s inequality and the triangle inequality.

The above result is useful because the distance between the two empirical distributions D(f̂1, f̂2) is simply the

cost of a minimum-weight bipartite matching between the elements of f̂1 and f̂2, multiplied by a factor of 1/n.

Thus, one simple, “back-of-the-envelope” procedure to select the distance parameter t would be to sample two sets

of n points each, let c be equal to the cost of the minimum-weight bipartite matching between them, and set t = αc

with α ∈ [1/2, 1].

If we desire rigorous probabilistic bounds on t, more sophisticated machinery is required. Theorem 6.15 of [87]

gives a useful bound on the Wasserstein distance between two probability density functions f1 and f2 by

D(f1, f2) ≤
x

R

‖x0 − x‖ · |f1(x)− f2(x)| dA

for any x0 ∈ R. Theorem 1(i) of [18] relates the right-hand side of the above to the relative entropy H(f1|f2)

between f1 and f2 by the expression

x

R

‖x0 − x‖ · |f1(x)− f2(x)| dA ≤
(

3
2 + log

x

R

e2‖x−x0‖f2(x) dA
)(√

H(f1|f2) + 1
2H(f1|f2)

)
,

where we define

H(f1|f2) =
x

R

f1(x) log f1(x)
f2(x)

dA .
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Let r = minx0∈Rmaxx∈R ‖x−x0‖ denote the “radius” of R, whence log
s
R e

2‖x−x0‖f2(x) dA ≤ log e2r = 2r. Thus,

if D(f1, f2) ≥ t, we have

t ≤ D(f1, f2) ≤
x

R

‖x0 − x‖ · |f1(x)− f2(x)| dA

≤
(

3
2 + 2r

)(√
H(f1|f2) + 1

2H(f1|f2)
)

=⇒ H(f1|f2) ≥ 8r − 2
√

16r2 + 16rt+ 24r + 12t+ 9 + 4t+ 6
3 + 4r . (17)

Next, the paper [17] shows that, for any distribution f with empirical distribution f̂ , we have

lim sup
n→∞

1
n

log Pr(D(f, f̂) ≥ t) ≤ −α(t) ,

where the function α(t) is defined as

α(t) = inf
g:D(f,g)≥t

H(f |g) .

the result (17) establishes that α(t) ≥ (8r− 2
√

16r2 + 16rt+ 24r + 12t+ 9+4t+6)/(3+4r), and therefore we find

that

lim sup
n→∞

1
n

log Pr(D(f, f̂) ≥ t) ≤ −8r − 2
√

16r2 + 16rt+ 24r + 12t+ 9 + 4t+ 6
3 + 4r

=⇒ Pr(D(f, f̂) ≥ t) > exp
(
−n8r − 2

√
16r2 + 16rt+ 24r + 12t+ 9 + 4t+ 6

3 + 4r

)
, (18)

where the notation “>” reflects the approximate inequality that results from dropping the “lim sup” term. Thus,

given a desired significance level 1− β, we can construct a threshold distance t by equating the right-hand side of

(18) to 1− β and solving for t. Figure 4 shows a plot of these threshold values of t as a function of β, for n = 100

samples in the unit square.

5 Computational experiments

In this section, we apply our theoretical results to two computational experiments: the first experiment shows the

impact of increasing the number of samples n, and the second is a districting strategy in which we divide a map of

Los Angeles County into pieces so as to to minimize the worst-case workload of any vehicle.
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Figure 4: Threshold values of t for significance levels between 0 and 1, where n = 100 points are sampled in the
unit square. For example, at 1 − β = 0.9, we have t = 0.102; this means that, if 100 samples are drawn from any
distribution f in the unit square, then there is at least a 90% probability that D(f, f̂) ≤ 0.102.

5.1 Varying values of n

In our first experiment, we let R be the unit square, and as a ground truth distribution f̄ we use an even mixture

of two truncated Gaussian distributions with means µ1, µ2 = (0.400, 0.187), (0.795, 0.490) and covariance matrices

Σ1 = Σ2 = ( 0.070 0
0 0.070 ). This mixture was chosen because it satisfies

s
R

√
f̄(x) dA = 0.55 and therefore represents

a compromise between extreme clustering (which would have
s
R

√
f̄(x) dA close to zero) and a perfect uniform

distribution (which would have
s
R

√
f̄(x) dA equal to one). For n ∈ {2, . . . , 100}, we performed 10 independent

experiments where we drew n samples from f̄ and then obtained the worst-case TSP distribution f∗ by solving

problem (3) via Algorithm 1 (hence, 99 × 10 experiments in total). For each experiment, we defined our distance

constraint using Theorem 13 by setting t to be the cost of a minimum-weight bipartite matching between two

independent collections of samples of size n from f̄ (multiplied by a factor of 1/n). Figure 5a shows a plot of the

worst-case TSP costs
s
R

√
f∗(x) dA as n varies, and Figure 5b shows the same data, only using the Wasserstein

distance threshold t as the independent variable. Not surprisingly, it is clear that the worst-case cost decreases as n

increases and as t decreases. Figure 5b suggests that the worst-case cost, measured as a function of t, decreases in

a concave fashion as t → 0. For purposes of comparison, Figure 5c shows the estimates of
s
R

√
f̄(x) dA obtained

when one uses a uniform kernel density estimator.
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Figure 5: Figure 5a shows the worst-case costs that are computed during the 99× 10 executions of our algorithm;
the gray plots indicate the results obtained from individual samples and the thick line indicates the sample averages
of the 10 trials for fixed n. Figure 5b shows the same data set, only we plot the worst-case costs as a function of the
Wasserstein distance threshold t rather than a function of n; the gray points indicate individual experiments and
the dark points again indicate the sample averages of the 10 trials for fixed n. For purposes of comparison, Figure
5c shows the estimates of

s
R

√
f̄(x) dA obtained when one uses a uniform kernel density estimator; that is, if we

draw n samples x1, . . . , xn from f̄ , then we define an estimator f̃ by setting f̃(x) = 1
C

∑
i 1(‖x − xi‖ ≤ r), where

r is a “bandwidth” parameter and C is a normalization constant. As in the preceding two figures, the gray plots
indicate the results from individual samples, the thick lines indicate sample averages of 10 trials for fixed n, and
the dashed line indicates the true value of

s
R

√
f̄(x) dA; furthermore, as indicated, we used 5 different values of r

between 0.03 and 0.3; note that the estimate
s
R

√
f̃(x) dA is highly sensitive to the choice of r.

5.2 A districting experiment with road network data

In this section, we describe an experiment in which we divide a service region R into 4 pieces so as to allocate the

workloads of a fleet of vehicles. This experiment is much more elaborate than that of the preceding section because

we compute our TSP tours using data from an actual road network, rather than simply make an assumption that

distances are Euclidean. Specifically, our service region R is a map of Los Angeles County, and distances between

points are measured according to the driving distance, as obtained via the Google Distance Matrix API [38]. Our

sampled points x1, . . . , xn are the locations of crime reports filed in the first week of July, which were extracted from

the “Detailed Report” tool at the CrimeMapping.com website developed by the Omega Group [67], and are shown

in Figure 6. The purpose of this experiment is two-fold: first, we must demonstrate that the proposed continuous

approximation techniques are actually useful for solving practical problems, and second, we must then show that

our proposed methodology is superior to that of existing approaches.

5.2.1 Validation of continuous approximation methods

In order to apply our results to solve a practical problem, it is necessary to first confirm that the continuous

approximation method remains valid and useful even when point-to-point distances are not Euclidean. As an initial
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Figure 6: Locations of 1704 crime reports filed in Los Angeles County during the first week of July, obtained from
the website [67].

sanity check, we first sample between n = 2 and n = 500 points uniformly at random within the map R of Los

Angeles County, and solve the TSP for these points where distances are given by the driving distance as obtained

from the Google Distance Matrix API [38]. We also sample between n = 2 and n = 500 points from the non-

uniform distribution consisting of the locations of crime reports obtained from [67], as shown in Figure 6. The

lengths of these tours, computed via the Concorde TSP solver [8], are shown in Figure 7, and are consistent with

the findings of Table 16.7 of [10] for the Euclidean TSP in the unit square: specifically, we see that the square-root

approximation tends to slightly underestimate the tour length for small values of n. For example, [10] says that a

TSP tour of n ≈ 100 points in the unit square (with Euclidean distances) is approximately 0.78
√
n, whereas a TSP

tour of n ≈ 1000 points is approximately 0.73
√
n. Figure 7 suggests that, provided one has some vague estimate of

the number of destination points n, the square root approximation is indeed a valid one, even when distances are

not Euclidean and the spatial distribution is not uniform.

We have thus far established that the length of a TSP tour of n points in R scales proportionally to
√
n.

However, it is necessary to take into account the heterogeneity of the road network as well: for example, point-to-

point distances in the middle of downtown Los Angeles are likely to be close to the `1 metric because the streets

form a regular grid, whereas point-to-point distances elsewhere will likely be longer due to sparser road coverage. In

order to take this factor into account, we should first note that Theorem 2 actually holds under much more general

conditions than the Euclidean TSP, and remains valid when one considers the TSP under many “natural” norms or

even other combinatorial structures such as the minimum spanning tree or Steiner tree (more precisely, Theorem

27



0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4
x 103

n

W
or

kl
oa

ds
 (k

m
)

(a)

1 6 11 16 21
0

1

2

3

4

5

6

7

8

9

10
x 102

n

W
or

kl
oa

ds
 (k

m
)

(b)

1 6 11 16 21
0

1

2

3

4

5

6

7

8

9

10
x 102

n

W
or

kl
oa

ds
 (k

m
)

(c)

Figure 7: The lengths of the TSP tours of n points sampled in Los Angeles County, where point-to-point distances
are induced by a road network. In all three diagrams, the upper plot corresponds to uniformly distributed points
and the lower plot corresponds to points that are sampled from the CrimeMapping.com website [67]. For each value
of n ∈ {1, . . . , 500} and for each of the two sampling strategies (uniform or non-uniform), we perform 10 independent
experiments in which n points are sampled and their TSP tour is calculated using Concorde [8]. Figure 7a shows
the tour lengths (the thin lines) together with the best fit of these tour lengths to a curve of the form C

√
n, where

we have C ≈ 159 for uniformly sampled points and C ≈ 64 for non-uniformly distributed points. Figure 7b shows a
close-up of this plot for n ∈ {1, . . . , 21}, where we can see that the fitted curve underestimates the true tour lengths
when n is small. A better fit for these small values of n, as shown in Figure 7c, is to set C ≈ 185 for uniformly
sampled points and C ≈ 77 for non-uniformly distributed points (as an aside, for small values of n, it is clearly
common sense to fit a curve of the form C

√
n− 1, since the TSP tour of a single point has length 0). This establishes

that, provided one has an approximate estimate of the number of points n, the square root approximation is indeed
a reasonable one.
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Figure 8: The TSP tour of a collection of points uniformly sampled in the unit square, with varying metrics
depending on quadrants. The dashed lines in the paths in the upper left quadrant correspond to the smaller of the
two directions (horizontal or vertical) between points, which is relevant because the `∞ distance is used.

2 holds whenever the underlying structure is a subadditive Euclidean functional; see [80, 81] for an extensive study

thereof). Obviously, the coefficient β depends on the choice of structure. The following example is useful in designing

an appropriate framework to handle this disparateness:

Example 14 (Varying metrics in a region). Consider a set of n points sampled according to a distribution f in

the unit square, with distances d(x1, x2) between pairs of points x1 = (x1
1, x

2
1) and x2 = (x1

2, x
2
2) defined as follows:

• If x1 and x2 are in the lower left quadrant, then d(x1, x2) is the Euclidean distance between x1 and x2.

• If x1 and x2 are in the lower right quadrant, then d(x1, x2) is the `1 distance between x1 and x2.

• If x1 and x2 are in the upper left quadrant, then d(x1, x2) is the `∞ distance between x1 and x2.

• If x1 and x2 are in the upper right quadrant, then d(x1, x2) =
√

(x1 − x2)TA(x1 − x2), where A is a symmetric

positive definite matrix.

• If x1 and x2 are in different quadrants, then d(x1, x2) is determined by a tie-breaking rule of some sort (the

details of which are not relevant).

The TSP tour of a set of points under these assumptions is shown in Figure 8. If we let Q1, . . . , Q4 denote the four

quadrants of the square, then it is routine to verify that we in fact have

lim
N→∞

TSP(X1, . . . , XN )√
N

=
4∑
i=1

βi
x

Qi

√
fc(x) dA

where each βi is associated with the metric on quadrant Qi (e.g. β1 is the Euclidean TSP coefficient); one can

verify this by proceeding through the proof of the BHH theorem in (for example) Chapter 2.4 of [81].
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Figure 9: The shading in Figure 9a indicates the values of βi associated with each of the square patches (lighter
patches correspond to higher values of βi). Figure 9b is a histogram of these same values; note that a handful
of these values are actually lower than the current estimate [9] of the Euclidean TSP coefficient β ≈ 0.7124; this
appears to be a combination of statistical noise and an artifact of the Google Maps API [38] that was used to
compute driving distances; for example, two locations belonging to the same venue (e.g., two stores on opposite
ends of a large shopping mall) report a driving distance of 0.

Example 14 suggests a general approach that is useful when the service region R has a heterogeneous road

network: if we decompose R into a collection of “patches” Q1, . . . , QK , then we adopt the approximation

TSP(X1, . . . , Xn) ≈
√
n ·

K∑
i=1

βi
x

Qi

√
fc(x) dA .

One can estimate the values βi as follows: if we sample a set of k points uniformly in Qi and compute the length

of their TSP tour `i (using road network distances), we would expect to see that `i ≈ βi
√

Area(Qi) · k; this is

simply the uniform case of the BHH theorem applied to points constrained to lie in Qi. Thus, a sensible estimate

of βi is given by setting βi = `i/
√

Area(Qi) · k. We discretized the region R into a collection of patches Qi of size

2 km× 2 km, and estimated each coefficient βi using k = 10 samples (a larger number would be preferable, but the

Google Maps API [38] imposes a limit of at most 100, 000 queries per day); Figure 9 shows the resulting values.

We found a total of K = 2564 patches in which road coverage was adequate for distances to be estimated, whence

Area(R) = (2 km× 2 km) ·K = 10256 km2.

In order to validate these estimates βi, we revisit the earlier experiment in which we sampled up to 500 points

in R, where we found (as suggested in Figure 7a) that the length of the TSP tour of n points sampled uniformly

in R is approximately 159
√
n kilometers. It follows that, for uniformly distributed points Xi in R, the fact that
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f(x) = 1/Area(R) implies that

159
√
n ≈ TSP(X1, . . . , Xn) ≈

√
n ·

K∑
i=1

βi
x

Qi

√
fc(x) dA =

√
n ·

K∑
i=1

βi · (4 km2) ·
√

1/Area(R) dA

=
√
n · 0.0395

K∑
i=1

βi ,

and so we expect to find that 0.0395
∑K
i=1 βi should sum to approximately 159. Indeed, we find that 0.0395

∑K
i=1 βi ≈

142, so that we introduce a relative error of approximately 10%. In order to compensate for this error, we re-scale

all terms βi 7→ 159
142βi for all i.

5.2.2 Districting criteria

In this section, we apply the theory developed in this paper to solve a problem in which we seek to partition R (a

map of Los Angeles County) into service districts so as to divide the workloads of a fleet of vehicles in a balanced

way. In order to divide R into districts, we use a computational geometric structure called a power diagram [11],

which has frequently been applied to districting problems in existing literature on vehicle routing [24, 30, 34, 60, 71].

Given a set of “depot points” p1, . . . , pm in R and any vector w ∈ Rm, the power diagram of R with respect to

p1, . . . , pm and w is a partition of R into districts D1, . . . , Dm defined by

Di =
{
x ∈ R : ‖x− pi‖2 − wi ≤ ‖x− pj‖2 − wj ∀j 6= i

}
. (19)

An example of a power diagram is shown in Figure 10. It is straightforward to verify that the pieces Di are always

convex. In our experiment, we let p1, . . . , pm=4 be the locations of the 4 major police stations associated with the

4 largest cities in Los Angeles County, namely Los Angeles, Long Beach, Glendale, and Santa Clarita, which are

shown in Figure 11. Given these locations pi, our goal is to select a weight vector w that determines an “optimal”

partition D1, . . . , D4 with respect to some cost function that approximates the workloads in these regions; selected

cost functions will be described later in this section.

It would of course be desirable to replace the Euclidean distance terms in (19) with the driving distance (which

would result in boundaries between sub-regions that are characterized, in some sense, by the underlying road

network). Unfortunately, for practical reasons, we are prevented from doing this because of the limit of 100, 000

queries per day of the Google Maps API, which we used to calculate driving distances. When one does not have such

a limit (e.g. when driving distances are computed “in-house”), then obviously, such a method is indeed feasible.

We next describe three objective functions or attributes associated with the districts Di that we seek to optimize
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(a) (b) (c)

Figure 10: Figure 10a is a Voronoi partition, that is, a power diagram with all weights wi equal (each district
consists of those points that are closer to their associated landmark point than the others). Figures 10b and 10c
present the two power diagrams obtained by increasing and decreasing the weight associated with the shaded cell.

Figure 11: Locations of 4 police stations associated with the 4 largest cities in Los Angeles County.
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by selecting the weight vector w.

Equal ni: A common-sense criterion in designing districts would be to require that the number of customers in

each district Di, which we denote as ni, be the same. This is eminently sensible when the spatial distribution

of customers is uniform, and has been applied previously to large-scale routing problems in [59, 89], for

example. Given a collection of points x1, . . . , xn in R, it turns out that it is computationally extremely simple

to compute a weight vector w∗ such that each district Di contains the same number n/m of customers (with

the possibility of being off by one if m does not divide n evenly): the desired weight vector is the Lagrange

multiplier vector associated with the first set of constraints in the assignment problem

minimize
zij

n∑
i=1

m∑
j=1

cijzij s.t.

n∑
i=1

zij = n

m
∀j

m∑
j=1

zij = 1 ∀i

zij ≥ 0 ∀i, j ,

where we set cij = ‖xi − pj‖2. This is solvable as a linear program.

Equal
√
Aini: By far the most popular approximation in designing districts for vehicle routing problems is the

estimation

TSP(Di) ≈ β
√
Aini ,

where Ai = Area(Di), ni is the number of customers in Di as before, and the notation TSP(Di) denotes the

length of the TSP tour through the ni points in Di. This has been used previously in [22, 44, 61, 62, 66], for

example, and is predicated on the assumption that the points are uniformly distributed within each district

Di (in other words, the distribution may vary over R, but the distribution is assumed to be more or less

uniform within each of the districts). This is nothing more than the BHH theorem, applied to a set of points

that are uniformly distributed within each district Di. It is possible to compute a weight vector w∗ such that
√
Aini is equal for all districts Di using a simple gradient descent scheme similar to that used in [71] (with

the same caveat that an “off by one” error may exist as in the previous example).

Mean-covariance robust partitioning: Section 5 of our earlier paper [30] describes a branch-and-bound method

for partitioning a region R into a power diagram partition in which the worst-case workloads for all districts

Di are equal. Here, the “worst-case workloads” are defined via robust optimization, specifically the solution
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to (4). In other words, we construct a power diagram partition against all distributions whose mean and

covariance matrix are equal to the fixed values obtained from the sampled points x1, . . . , xn.

Wasserstein robust partitioning Problem (16) in Section 4.1 of this paper describes the structure of the worst-

case distribution that maximizes the asymptotic workload in a particular district Di, subject to a Wasserstein

distance constraint. Thus, it is sensible to seek a weight vector w∗ that results in districts D1, . . . , Dm such

that the solution to (16) is equal for each district (in other words, the worst-case workloads are the same for

all districts). The branch-and-bound scheme from Section 5 of [30] is based on a simple set of monotonicity

properties and can be applied to find these districts as well.

5.2.3 Results

In order to demonstrate the practicality of our proposed approach, we compare the districts that result from

enforcing the four criteria from the preceding section, where the data points are the locations of crime reports

filed in the first week of July as previously shown in Figure 6. We give the first three partitioning criteria (i.e.

the non-Wasserstein criteria) an advantage by building their districts using knowledge of all 1704 sample points

(the mean-covariance partitioning scheme uses exact knowledge of the mean and covariance of the data points).

By comparison, the Wasserstein partitions are computed using a sample of only 50 points drawn from the full

dataset, and with a threshold distance t calculated according to equation (18) with a 90% confidence level. The

four sets of districts, together with the resulting workloads, are shown in Figures 12 and 13. Not surprisingly, we

see that the non-uniformity of the samples leads to districts whose workloads are substantially unbalanced. Even

more surprising is the fact that the mean-covariance robust partitioning method is by far the worst of the three;

we attribute this to the fact that the crime locations are distributed in a highly multi-modal, non-uniform fashion,

and that the worst-case distribution with given first and second moments as derived in [30] always has a unimodal

shape (together with a mixture of Dirac delta components).

This experiment establishes that our approach is useful for balancing workloads of vehicles when one has limited

sample information and when the underlying distribution is highly non-uniform. We also conducted another set of

experiments in which we sampled 1000 points uniformly in R, as shown in Figure 14, and applied the four districting

criteria. As Figure 15 shows, the four criteria are roughly indistinguishable in this case.
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(a) Equal ni (b) Equal
√

Aini

(c) Robust mean-covariance (d) Wasserstein

Figure 12: The power diagram districts obtained according to the four partitioning criteria.
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Figure 13: The workloads associated with the four districts and the four partitioning criteria from Figure 12,
interpreted as follows: the colors of the various plots correspond to the workloads in the district of the same color
(e.g. the magenta plots correspond to the magenta district, which belongs to Santa Clarita). The left set of
plots corresponds to the workloads that result when we design districts according to the Wasserstein partitioning
criterion: more precisely, for each value of t in the range shown, we construct a weight vector w∗ such that the
worst-case workloads in problem (16) are all equal. Thus, different values of t correspond to different values of
w∗, and thereby different partitions. The left-hand plot shows the true workloads for each of the districts as t
varies; the maximum value of t of 18.3 km is calculated according to equation (18) with a 90% confidence level with
n = 50 samples. The three sets of stem plots on the right show the workloads in each of the four districts that
are obtained when one partitions according to the first three criteria of Section 5.2.2. The Wasserstein partitioning
criterion consistently produces districts whose workloads are more balanced than those of the other three criteria,
even though the Wasserstein partitions are constructed using a small number of samples, whereas the other three
methods are actually permitted to make complete use of all 1704 sample points (the mean-covariance partitioning
scheme uses exact knowledge of the mean and covariance of the data points). Surprisingly, we found that the the
mean-covariance robust partitioning method is by far the worst of the three.
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Figure 14: 1000 uniformly sampled points in Los Angeles County.

6 Conclusions

By using the Wasserstein distance to define our region of ambiguity, we have developed a new tool for estimating the

worst-case workload that one might face in visiting a sequence of points that is not affected by problems that would

arise if we used only mean and covariance information as has been previously attempted. Our use of the square

root functional
s
R

√
f(x) dA to approximate lengths of TSP tours is just one possibility; one might also extend

our analysis to handle more elaborate routing problems by adopting more sophisticated objective functionals as in

[51]. To the best of our knowledge, our use of the Wasserstein distance in such an application is the first of its kind,

and may have further applications outside the transportation domain, such as entropy or quantile maximization.
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Online supplement to “Wasserstein distance and

the distributionally robust TSP”

A Proof of Lemma 4

Proofs of statements 2 through 4 follow below:

Proof of statement 2 We seek to show that

x

R

f(x) min
i
{‖x− xi‖ − λ

′

i} dA ≤
x

R

f(x) min
i
{‖x− xi‖ − λi} dA+ gT (λ

′
− λ) ,

which is equivalent to showing that

x

R

f(x) min
i
{‖x− xi‖ − λ

′

i} dA ≤
n∑
i=1

x

Ri

f(x)(‖x− xi‖ − λi) dA+ gi(λ
′

i − λi) .

Consider the right-hand side of the above; for each i, we have

x

Ri

f(x)(‖x− xi‖ − λi) dA+ gi(λ
′

i − λi) =
x

Ri

f(x)(‖x− xi‖ − λi) dA− (λ
′

i − λi)
x

Ri

f(x) dA

=
x

Ri

f(x)(‖x− xi‖ − λ
′

i) dA
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and therefore, if we define regions R′1, . . . , R
′

n in the obvious way by

R
′

i =
{
x ∈ R : ‖x− xi‖ − λ

′

i ≤ ‖x− xj‖ − λ
′

j ∀j 6= i
}
,

we see that

x

R

f(x) min
i
{‖x− xi‖ − λ

′

i} dA =
n∑
i=1

x

R
′
i

f(x)(‖x− xi‖ − λ
′

i) dA ≤
n∑
i=1

x

Ri

f(x)(‖x− xi‖ − λ
′

i) dA

is obvious because the partition R′1, . . . , R
′

n is obtained by taking the minimal value of ‖x−xi‖−λ
′

i, and is therefore

minimal over all partitions of R. This completes the proof.

Proof of statement 3 We observe that the vector − 1
ne ∈ Rn must be a supergradient at λ∗; this simply follows

from the KKT conditions of (2), which is a finite-dimensional problem. Therefore, it follows that
s
R∗

i
f(x) dA = 1/n

for all i, and therefore the objective value of problem (2) is

x

R

f(x) min
i
{‖x− xi‖ − λ∗i } dA =

n∑
i=1

x

R∗
i

f(x)(‖x− xi‖ − λ∗i ) dA

=
n∑
i=1

x

R∗
i

f(x)‖x− xi‖ dA− λ∗i
x

R∗
i

f(x) dA

=
n∑
i=1

x

R∗
i

f(x)‖x− xi‖ dA−
1
n

eTλ∗︸ ︷︷ ︸
=0

=
n∑
i=1

x

R∗
i

f(x)‖x− xi‖ dA

and therefore the Wasserstein distance between f and f̂ as induced by the partition R∗1, . . . , R∗n is the same as that

of the optimal objective value of (2), which completes the proof.

Proof of statement 4 We simply note that if f(x) > 0 then the supergradient inequality in the proof of statement

2 is actually strict:
n∑
i=1

x

R
′
i

f(x)(‖x− xi‖ − λ
′

i) dA <
n∑
i=1

x

Ri

f(x)(‖x− xi‖ − λ
′

i) dA .

The objective function of problem (2) is therefore strictly concave, thus guaranteeing uniqueness of λ∗. The fact

that λ∗ exists follows from the boundedness of R, because if we were ever to have λi − λj > diam(R), it would

imply that ‖x− xi‖ − λi < ‖x− xj‖ − λj for all x ∈ R, thus rendering Rj to be empty.
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B Proof of Theorem 5

Purely for ease of exposition, we assume that R is the unit square. Section 2.1 of [28] says that D(f̂n, f̄)→ 0 with

probability one because the Wasserstein distance metrizes weak convergence whenever R is compact. Thus, setting

tn = D(f̂n, f̄) for all n ≥ 1 gives us a sequence that converges to 0 with probability one, with the added feature

that f̄ is feasible for problem (5) by construction. Next, for each n, the triangle inequality says that the set of

distributions f on R such that D(f, f̄) ≤ 2tn must contain the set of distributions where D(f, f̂n) ≤ tn. Thus, an

upper bound for problem (5) – which is itself always an upper bound for the ground truth cost
s
R

√
f̄(x) dA by

our construction of tn – is given by the problem

maximize
f

x

R

√
f(x) dA s.t. (20)

D(f, f̄) ≤ 2tn
x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R ;

it will therefore suffice to verify that the optimal objective value to this problem approaches the ground truth cost

as tn → 0.

We will relax problem (20) one step further by using an alternate metric to the Wasserstein distance, namely

the Prokhorov metric DP (·, ·), defined by

DP (µ1, µ2) = inf{ε > 0 : µ1(B) ≤ µ2(Bε) + ε for all Borel sets B on R}

where Bε = {x : infy∈B d(x, y) ≤ ε}. Theorem 2 of [47] says that for any two distributions f and g on R, we have

(DP (f, g))2 ≤ D(f, g), and therefore we can study the relaxation of (20) given by

maximize
f

x

R

√
f(x) dA s.t. (21)

DP (f, f̄) ≤
√

2tn
x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

as n→∞, whence tn → 0 with probability one. For ease of notation, we will define ε =
√

2tn.
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Figure 16: A division of the unit square R into N2 = 16 grid cells. The larger square S10 has side length
1/N + 2/N3and contains s10.

Let N be a positive integer and suppose that ε = 1/N3. We then divide R into N2 square grid cells si with

side length 1/N . The distance constraint DP (f, f̄) ≤ ε implies that for each B = si, we have
s
si
f(x) dA ≤

s
Si
f̄(x) dA + ε, where Si is the square of side length 1/N + 2/N3 that contains si (see Figure 16). Define

mi = N2 s
Si
f̄(x) dA for each mi and consider the relaxation of (21) given by

maximize
f

x

R

√
f(x) dA s.t. (22)

x

si

f(x) dA ≤ mi

N2 + ε ∀i

x

R

f(x) dA = 1

f(x) ≥ 0 ∀x ∈ R .

If we ignore the constraint that
s
R
f(x) dA = 1, then clearly, our optimal solution f∗ would simply have

s
si
f∗(x) dA =

mi/N
2 + ε for each i. This problem has a finite-dimensional constraint space and it is straightforward to see that

its optimal solution f∗ must be piecewise constant on each piece si, so that f∗ = q∗i on each si, defined by

q∗i
N2 = mi

N2 + ε

or equivalently

q∗i = mi + 1/N .
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Thus, the optimal objective value of (22) is at most

1
N2

N2∑
i=1

√
q∗i = 1

N2

N2∑
i=1

√
mi + 1/N ≤ 1

N2

N2∑
i=1

√
mi + 1

N2

N2∑
i=1

√
1/N = 1

N2

N2∑
i=1

√
mi +

√
1/N ;

it is routine to verify that 1
N2

∑N2

i=1
√
mi →

s
R

√
f̄(x) dA (the only reason that this is not simply the definition of

an integral is because the squares Si that characterize the mi’s have an area of (1/N + 2/N3)2 rather than 1/N2),

which thereby completes the proof.

C Probabilistic analysis of the capacitated VRP

We first note that, if n samples are drawn from a distribution f , then E(
∑n
i=1 ‖xi‖) = n

s
R ‖x‖f(x) dA. The

representation of capacity constraints via the substitution c = s
√
n is a standard and useful technique that can be

seen in Section 4.2 of [35] or the paper [36]. By exchanging the expectation and max{·, ·} operators, we can express

the bound (12) as

max
{

2
√
n

s

x

R

‖x‖f(x) dA, β
√
n

x

R

√
fc(x) dA

}
+ o(
√
n)

≤ E VRP(X)

≤ 2
⌈√

n

s

⌉x

R

‖x‖f(x) dA+
(

1− 1
s
√
n

)
β
√
n

x

R

√
fc(x) dA+ o(

√
n) .

Note that d
√
n/se is simply the number of vehicles needed to provide service. Since we are interested in the limiting

behavior as n→∞, we have d
√
n/se ∼

√
n/s and 1/(s

√
n)→ 0, so that we can write

√
n ·max

{
2
s

x

R

‖x‖f(x) dA, β
x

R

√
fc(x) dA

}
> VRP(X) >

√
n ·

(
2
s

x

R

‖x‖f(x) dA+ β
x

R

√
fc(x) dA

)

as desired, where the approximate inequality implied by the “>” terms simply reflects the fact that we have

disregarded the o(
√
n) terms.
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