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OA–1 Proofs for the Deterministic Example

Proposition 1. Suppose that the probability distribution of the observed quantity is given by (6)

with d < c, and that forecasts are made according to (7). Then Lk+1 ≤ Lk for all k. Furthermore,

there exists a k∗ such that Lj = 0 and Xj = 0 for all j ≥ k∗.

Proof. Note that

Xk+1 = [d− (c− Lk)+]+ ≤ [d− (c− Lk)]+ ≤ Lk. (OA–1)

In view of (7), we see that Ĥk+1(x) > Ĥk(x) for all x ≥ Xk+1 such that Ĥk(x) < 1, and Ĥk+1(x) =

1 for all x ≥ Xk+1 such that Ĥk(x) = 1. Therefore, Lk+1 ≤ Lk by (5), so the first part of the

proposition is proved.

Let ε := c − d > 0. Notice that if Lj ≥ ε then Xj+1 ≤ Lj − ε by (OA–1). Moreover, (OA–1)

also implies that if 0 ≤ Lj < ε, then Xj+1 = 0. Since we have already shown that the sequence of

protection levels is non-increasing, it follows that if k is such that Lk ≥ ε, then Xj+1 ≤ Lk − ε for

all j ≥ k.

Define

k′ := min

{

j > k :
k

j
Ĥk(Lk − ε) +

j − k

j
> γ

}

. (OA–2)

Observe that k′ < ∞, because γ < 1. By (OA–2), we have that Ĥk′(Lk − ε) > γ. Therefore, if

x ∈ (Ĥk′)−1(γ) then x ≤ Lk − ε. Since Lk
′

∈ (Ĥk′)−1(γ), it follows that Lk
′

≤ Lk − ε.

Suppose now that 0 ≤ Lk < ε. Then, (OA–1) implies that Xk+1 = 0. An argument similar

to that used above shows that there exists a k∗ > k such that Lk
∗

= 0. Since the sequence of

protection levels is non-increasing, the second part of the proposition follows. �

Proposition 2. Suppose that the probability distribution of the observed quantity is given by (6)

with d > c, and that forecasts are made according to (7). Suppose that L0 ∈ [0, c]. Then Lk+1 ≥ Lk

for all k. Furthermore, there exists a k◦ such that Lj = d and Xj = d for all j ≥ k◦.

Proof. For the first part of the proposition, suppose that Lk ∈ [0, c]. Note that

Xk+1 = d− (c− Lk) = Lk + ε. (OA–3)

OA–1



In view of (7), we see that Ĥk+1(x) ≤ Ĥk(x) for all x < Xk+1; in addition, Ĥk+1(x) < Ĥk(x) for

all x < Xk+1 such that Ĥk(x) > 0. Therefore, Lk+1 ≥ Lk by (5).

Recall that Ĥk(Xk+1−) := limx↑Xk+1 Ĥk(x) denotes the left limit of Ĥk at Xk+1. Consider any

integer j > kĤk(Xk+1−)/γ. Then one of two cases must hold: either there is an integer k′ ≤ j

such that Lk
′

> c, or Li ∈ [0, c] for all i ≤ j. In the latter case, choose k′ = j, and note that

Ĥj(Xk+1−) = kĤk(Xk+1−)/j < γ, and thus Lj := (Ĥj)−1(γ) ≥ Xk+1 = Lk + ε. In summary, k′

is such that Lk
′

> c or Lk
′

≥ Lk + ε.

Next, note that if Lk > c, then Xk+1 = d. An argument similar to that used above shows that

there exists a k◦ ≥ k such that Lk
◦

= d. Note that at the first time k′ such that Lk
′

> c, it still

holds that Lk
′

≤ d, because Xk ≤ d and thus Ĥk(d) = 1 for all k, and hence Lk ≤ Lk+1 also when

Lk > c. For the same reason, given that Lk
◦

= d then Lk = d for all k ≥ k◦, which is the second

assertion of the proposition. �

OA–2 Proof of Proposition 17

Lemma OA–1. Consider the metric space (P(R), λ) of probability distributions on R endowed

with the Lévy metric λ, defined as follows for F,H ∈ P(R):

λ(F,H) := inf{ε > 0 : F (x− ε) − ε ≤ H(x) ≤ F (x+ ε) + ε ∀ x ∈ R}.

Let N denote the natural numbers, and let Q denote the rational numbers. Then for any F,H ∈

P(R) and any r > 0, λ(F,H) < r if and only if there exists m ∈ N such that

F (x− r + 1/m) − r + 1/m < H(x) < F (x+ r − 1/m) + r − 1/m

for all x ∈ Q.

Proof. First, suppose that λ(F,H) < r. Then there exists m ∈ N such that λ(F,H) < r − 1/m,

and it follows from F being nondecreasing that F (x − r + 1/m) − r + 1/m < H(x) < F (x + r −

1/m) + r − 1/m for all x ∈ R, and thus for all x ∈ Q.

Next, suppose that there exists an m ∈ N such that F (x − r + 1/m) − r + 1/m < H(x) <

F (x+ r − 1/m) + r − 1/m for all x ∈ Q. Consider any x ∈ R, and a sequence {xn} ⊂ Q such that

xn ↓ x. Then F (xn−r+1/m)−r+1/m < H(xn) < F (xn+r−1/m)+r−1/m for all n. It follows from

the right continuity of F and H that F (x−r+1/m)−r+1/m ≤ H(x) ≤ F (x+r−1/m)+r−1/m.

Hence λ(F,H) := inf{ε > 0 : F (x− ε) − ε ≤ H(x) ≤ F (x+ ε) + ε ∀ x ∈ R} ≤ r − 1/m < r. �

Proposition 17. Let B denote the Borel σ-algebra on R. Consider the space (P(R),B) of proba-

bility distributions on R, endowed with the Borel σ-algebra B corresponding to the topology of weak

convergence on P(R). Consider a measurable space (Ω,F). Let {Hk : Ω 7→ P(R)} be a sequence of

(F ,B)-measurable functions.
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(i) Consider a probability space (Ω,F ,P) and a filtration {Fk}. Consider a random sequence

{Y k} adapted to filtration {Fk}, where Y k : Ω 7→ R. Let F k : Ω 7→ P(R) be given by

F k(ω, x) := P[Y k+1 ≤ x | Fk], that is, F k is the conditional distribution of Y k+1. Then F k is

(Fk,B)-measurable.

(ii) The set Ω∗ := {ω ∈ Ω : Hk(ω, ·) converges weakly as k → ∞} is in F .

(iii) Let Ω∗ := {ω ∈ Ω : Hk(ω, ·) converges weakly as k → ∞}, and let F∗ := {A ∈ F : A ⊂ Ω∗}.

For each ω ∈ Ω∗, let H∗(ω, ·) denote the weak limit of {Hk(ω, ·)}. Then F∗ is a σ-algebra on

Ω∗. In addition, H∗ is (F∗,B)-measurable, and thus H∗ is also (F ,B)-measurable.

(iv) For any (F ,B)-measurable F : Ω 7→ P(R), the set
{

ω ∈ Ω : Hk(ω, ·)
w
→ F (ω, ·)

}

is in F .

(v) Let F : Ω 7→ P(R) be an (F ,B)-measurable function. For any x ∈ R, let fx : Ω 7→ R be

defined as fx(ω) := F (ω, x). Then, fx is (F , B)-measurable. That is, fx is a real-valued

random variable.

Proof.

(i) Fix k. For each x ∈ R, define the function πx : P(R) 7→ R by πx(F ) := F (x). Consider

πx ◦ F
k : Ω 7→ R. Note that πx(F

k(ω, ·)) = F k(ω, x) := P[Y k+1 ≤ x | Fk], and thus πx ◦ F
k is

(Fk, B)-measurable.

Convergence in the Lévy metric λ, defined in Lemma OA–1, is equivalent to weak convergence

of elements of P(R). Moreover, the space P(R), endowed with the Lévy metric λ, is complete

and separable. For any F ∈ P(R) and r > 0, let B(F, r) := {H ∈ P(R) : λ(F,H) < r} denote

the ball with center F and radius r in (P(R), λ). Since (P(R), λ) is separable, its Borel sigma

algebra B is generated by the countable collection of open balls {B(F, 1/m) : F ∈ D,m ∈ N},

where D is a countable, dense subset of P(R). Therefore, to prove that F k is (Fk,B)-

measurable, it suffices to show that (F k)−1(B(F, r)) ∈ Fk for all F ∈ P(R) and r > 0.

Consider any F ∈ P(R) and r > 0. For any m ∈ N and x ∈ R, let Am,x := (F (x − r +

1/m) − r + 1/m,F (x + r − 1/m) + r − 1/m). It follows from Lemma OA–1 that B(F, r) =

∪m∈N ∩x∈Q π
−1
x (Am,x).

Thus, for any B(F, r),

(F k)−1
(

B(F, r)
)

= (F k)−1





⋃

m∈N

⋂

x∈Q

π−1
x (Am,x)





=
⋃

m∈N

⋂

x∈Q

(F k)−1
(

π−1
x (Am,x)

)

=
⋃

m∈N

⋂

x∈Q

(πx ◦ F
k)−1(Am,x)
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Recall that πx ◦ F k is (Fk, B)-measurable. Thus (πx ◦ F k)−1(Am,x) ∈ Fk, and hence

(F k)−1
(

B(F, r)
)

∈ Fk.

(ii) Completeness of (P(R), λ) implies that

{

ω ∈ Ω : lim
k→∞

F k(ω, ·) exists
}

=
{

ω ∈ Ω : {F k(ω, ·)} is Cauchy
}

. (OA–4)

The event on the right above can be expressed as

⋂

m≥1

⋃

n≥1

⋂

{i : i≥n}

⋂

{j : j≥n}

{

ω ∈ Ω : λ(F i(ω, ·), F j(ω, ·)) < 1/m
}

(OA–5)

Separability of (P(R), λ) implies that the mappings Λij : Ω 7→ R defined by Λij(ω) :=

λ(F i(ω, ·), F j(ω, ·)) are all (F , B)-measurable (Billingsley, 1968, p.25). Hence
{

ω ∈ Ω :

λ(F i(ω, ·), F j(ω, ·)) < 1/m
}

∈ F for all i, j,m, and therefore the set in (OA–5) is in F .

(iii) It is easy to verify that F∗ is a σ-algebra on Ω∗. It follows from Dudley (2002), Theorem 4.2.2,

that F ∗ is (F∗,B)-measurable. It follows immediately that F ∗ is also (F ,B)-measurable.

(iv) As before, separability of (P(R), λ) implies that the mappings Λk : Ω 7→ R defined by Λk(ω) :=

λ(F k(ω, ·), F (ω, ·)) are all (F , B)-measurable, and therefore so is lim supk→∞ Λk. Since

{

ω ∈ Ω : F k(ω, ·)
w
→ F (ω, ·)

}

=

{

ω ∈ Ω : lim sup
k→∞

Λk(ω) = 0

}

,

and since the set on the right is in F , it follows that the set on the left is in F as well.

(v) We follow closely an argument in Billingsley (1968), p.121. For each x ∈ R, define the function

πx : P(R) 7→ R by πx(F ) := F (x). For each ε > 0, define the function πεx : P(R) 7→ R by

πεx(F ) := ε−1
∫ x+ε
x F (u)du. We first show that πεx is continuous on P(R) and thus measurable.

Consider any sequence {Hk} ⊂ P(R) such that Hk w
→ H. It follows from a characterization

of weak convergence of distribution functions on R that Hk(u) → H(u) for all u except on

a countable set (the set of discontinuities of H). Since Hk(u) ≤ 1 for all u, it follows by

the bounded convergence theorem that
∫ x+ε
x Hk(u)du →

∫ x+ε
x H(u)du, and thus πεx(H

k) →

πεx(H). Hence, πεx is continuous and thus measurable. Next, since H is right-continuous, it

follows that πx(H) = limε↓0 π
ε
x(H) = limm→∞ π

1/m
x (H). Thus πx is the limit of a sequence of

measurable functions and therefore is (B, B)-measurable. It follows from the definition of πx

that fx(ω) = πx(F (ω, ·)). Therefore, fx is (F , B)-measurable. �

OA–3 Supporting Material for Proposition 3

Below, we use some notation from Section OA–2: λ is the Lévy metric on P(R), B is the Borel

σ-algebra on R, and B(h, r) is the ball of radius r about h ∈ P(R).
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Lemma OA–2. Let ψ : R 7→ P(R) be given by

ψ(y) := I{ ·≥y} . (OA–6)

Then the mapping ψ is (B,B)-measurable.

Proof. For any h ∈ P(R) and y ∈ R we have

λ(h, ψ(y)) = inf

{

ε > 0 :
h(x− ε) − ε ≤ 0 ≤ h(x+ ε) + ε for all x : x < y and

h(x− ε) − ε ≤ 1 ≤ h(x+ ε) + ε for all x : x ≥ y

}

= inf

{

ε > 0 :
h(x− ε) ≤ ε for all x : x < y and

h(x+ ε) ≥ 1 − ε for all x : x ≥ y

}

= inf{ε > 0 : lim
x↑y

h(x− ε) ≤ ε and h(y + ε) ≥ 1 − ε} (OA–7)

The space (P(R), λ) is separable with countable base given by {B(h, r) : h ∈ D, r ∈ Q}, where D

is a countable dense subset of P(R). Hence, to show the (B,B)-measurability of ψ, it suffices to

show that ψ−1(B(h, r)) ∈ B for all h and r.

To this end, for h ∈ P(R) and ε > 0, define ψ1
h,ε, ψ

2
h,ε, ψh,ε : R 7→ R by

ψ1
h,ε(y) := ε− lim

x↑y
h(x− ε), (OA–8)

ψ2
h,ε(y) := h(y + ε) − 1 + ε, (OA–9)

ψh,ε(y) := min{ψ1
h,ε(y), ψ

2
h,ε(y)} (OA–10)

The functions in (OA–8)–(OA–10) above are (B,B)-measurable because h ∈ P(R). Moreover,

by (OA–7) and (OA–8)–(OA–10), we have

ψ−1(B(h, r)) = {y ∈ R : λ(h, ψ(y)) < r}

=

{

y ∈ R : inf{ε > 0 : lim
x↑y

h(x− ε) ≤ ε and h(y + ε) ≥ 1 − ε} < r

}

= {y ∈ R : inf{ε > 0 : ψh,ε(y) ≥ 0} < r}

=
⋃

n : n−1<r

{y ∈ R : ψh,r−1/n(y) ≥ 0}.

In view of the measurability of ψh,ε(·), all the sets in the union in the final expression are in B,

and hence the proof is complete. �

Lemma OA–3. Suppose that H1, H2 : Ω 7→ P(R) are both (F ,B)-measurable mappings and that

α ∈ [0, 1]. The mapping ξα,H1,H2
: Ω 7→ P(R) given by

ξα,H1,H2
(ω, x) := αH1(ω, x) + (1 − α)H2(ω, x), x ∈ R (OA–11)

is (F ,B)-measurable.
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Proof. Note that ξα,H1,H2
can be expressed as θα ◦ JH1,H2

where JH1,H2
: Ω 7→ P(R) × P(R) is

defined by JH1,H2
(ω) := (H1(ω), H2(ω)), and θα : P(R) × P(R) 7→ P(R) is defined by

θα(h1, h2)(x) := αh1(x) + (1 − α)h2(x), x ∈ R .

The mapping JH1,H1
is (F ,B × B)-measurable, where B × B is defined as the σ-algebra generated

by sets of the form A1 ×A2 with A1, A2 ∈ B. So the lemma will be proved if we can show that θα

is (B × B,B)-measurable.

For this, consider the metric space P(R) × P(R) with metric λ∗ given by

λ∗((h1, h2), (h
′
1, h

′
2)) := max{λ(h1, h

′
1), λ(h2, h

′
2)};

see Billingsley (1968), p.225. From the definitions of λ, λ∗, and θα, it follows that λ∗((h1, h2), (h
′
1, h

′
2)) ≥

λ(θα(h1, h2), θα(h′1, h
′
2)). Therefore, θα is continuous. That is, for any open (in the topology

metrized by λ) set O ⊂ P(R), θ−1
α (O) is an open set in the topology metrized by λ∗. The Borel

sigma algebra on (P(R) × P(R), λ∗) is precisely B × B (Billingsley, 1968, p.225), so the open sets

metrized by λ∗ are in B × B. Summarizing, the open sets metrized by λ generate B, and the

inverse image of any such open set under θα is in B×B. Hence, θα is (B×B,B)-measurable, which

completes the proof. �

Proposition 18. Suppose that {Y k : Ω 7→ R} are (F , B)-measurable random variables. Then Ĥk

defined in (12) is (F ,B)-measurable for all k.

Proof. The proof is by induction. Let ψ be as defined in (OA–6). Note that

Ĥk(ω, ·) =
1

k

k
∑

n=1

(ψ ◦ Y n)(ω, ·) =
1

k
(ψ ◦ Y k)(ω, ·) +

k − 1

k
Ĥk−1(ω, ·)

Lemma OA–2 and the assumptions on Y n imply that ψ◦Y n is (F ,B)-measurable for each n. Hence

we immediately see that Ĥ1 := ψ◦Y 1 is (F ,B)-measurable. Suppose that the result holds for k−1.

With α = 1/k, H1 = ψ ◦ Y k, and H2 = Ĥk−1, we see that

Ĥk(ω, ·) = ξ
1/k , ψ◦Y k, Ĥk−1

(ω, ·), (OA–12)

where ξα,H1,H2
is defined in (OA–11). The desired result now follows from (OA–12), the induction

hypothesis, and Lemma OA–3. �

Lemma OA–4. Consider a probability space (Ω,F ,P), and a collection {Ai : i ∈ I} ⊂ F of

events, where I is a countable index set. Suppose that P[Ai] ≥ ε > 0 for all i ∈ I, and that for any

n+ 1 distinct indices i1, . . . , in+1 ∈ I, it holds that Ai1 ∩ · · · ∩Ain+1
= ∅. Then |I| ≤ n/ε.
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Proof. Let {Sj : j ∈ J} ⊂ 2I denote the collection of all subsets of I such that 1 ≤ |Sj | ≤ n for

all j ∈ J . Note that J is countable. For all i ∈ I,

Ai =
⋃

{j∈J : i∈Sj}

⋂

i′∈Sj

Ai′
⋂

i′∈Sc
j

Aci′

and the sets {∩i′∈Sj
Ai′ ∩i′∈Sc

j
Aci′ : j ∈ J} are disjoint. Thus,

P [Ai] =
∑

{j∈J : i∈Sj}

P





⋂

i′∈Sj

Ai′
⋂

i′∈Sc
j

Aci′



 ≥ ε > 0

Also,

⋃

i∈I

Ai =
⋃

j∈J

⋂

i∈Sj

Ai
⋂

i∈Sc
j

Aci

and, as before, the sets {∩i∈Sj
Ai ∩i∈Sc

j
Aci : j ∈ J} are disjoint. Thus,

∑

j∈J

P





⋂

i∈Sj

Ai
⋂

i∈Sc
j

Aci



 = P





⋃

j∈J

⋂

i∈Sj

Ai
⋂

i∈Sc
j

Aci



 = P

[

⋃

i∈I

Ai

]

≤ 1

Also,

∑

j∈J

P





⋂

i∈Sj

Ai
⋂

i∈Sc
j

Aci





≥ inf







∑

j∈J

xj :
∑

{j∈J : i∈Sj}

xj = P [Ai] ∀ i ∈ I, xj ≥ 0 ∀ j ∈ J







≥ inf







∑

j∈J

xj :
∑

{j∈J : i∈Sj}

xj ≥ ε ∀ i ∈ I, xj ≥ 0 ∀ j ∈ J







= inf







sup







∑

j∈J

xj +
∑

i∈I

yi



ε−
∑

{j∈J : i∈Sj}

xj



 : yi ≥ 0 ∀ i ∈ I







: xj ≥ 0 ∀ j ∈ J







≥ sup







inf







∑

j∈J

xj +
∑

i∈I

yi



ε−
∑

{j∈J : i∈Sj}

xj



 : xj ≥ 0 ∀ j ∈ J







: yi ≥ 0 ∀ i ∈ I







= sup







inf







∑

i∈I

εyi +
∑

j∈J

xj



1 −
∑

i∈Sj

yi



 : xj ≥ 0 ∀ j ∈ J







: yi ≥ 0 ∀ i ∈ I







= sup







∑

i∈I

εyi :
∑

i∈Sj

yi ≤ 1 ∀ j ∈ J, yi ≥ 0 ∀ i ∈ I







≥ |I|ε/n
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where the last inequality follows from the observation that yi = 1/n for all i ∈ I satisfies
∑

i∈Sj
yi ≤

1 for all j ∈ J , because |Sj | ≤ n for all j ∈ J . Combining the results above, it follows that |I|ε/n ≤ 1,

and thus |I| ≤ n/ε. �

Lemma 3. Consider a probability space (Ω,F ,P), and the space (P(R),B) of probability distri-

butions on R endowed with the Borel σ-algebra B corresponding to the topology of weak conver-

gence on P(R). Let F : Ω 7→ P(R)} be a (F ,B)-measurable function. For each ω ∈ Ω, let

D(ω) := {x ∈ R : F (ω, x) > F (ω, x−)} denote the set of jump points of F (ω, ·). Then the set

{x ∈ R : P[x ∈ D(ω)] > 0} is countable.

Proof. For each n ∈ N and x ∈ R, let Ωn
x := {ω ∈ Ω : F (ω, x) − F (ω, x−) > 1/(n + 1)}. Then

{ω ∈ Ω : x ∈ D(ω)} = ∪n∈NΩn
x. Thus P[x ∈ D(ω)] = P [∪n∈NΩn

x] ≤
∑

n∈N P [Ωn
x].

Consider any n + 1 distinct points x1, . . . , xn+1 ∈ R. Suppose that ω ∈ ∩n+1
i=1 Ωn

xi
. Then

∑n+1
i=1 [F (ω, xi) − F (ω, xi−)] > (n + 1)/(n + 1) = 1. However,

∑n+1
i=1 [F (ω, xi) − F (ω, xi−)] ≤

∑

x∈D(ω)[F (ω, xi) − F (ω, xi−)] ≤ 1, and thus ∩n+1
i=1 Ωn

xi
= ∅.

For each m,n ∈ N, let Dm,n := {x ∈ R : P [Ωn
x] ≥ 1/m}. Then {x ∈ R : P[x ∈ D(ω)] >

0} = ∪m,n∈ND
m,n. We show by contradiction that each set Dm,n is finite. Suppose that Dm,n is

infinite; if Dm,n is uncountable, choose a countably infinite subset of Dm,n and denote the subset

with Dm,n as well. Consider the countably infinite collection of events {Ωn
x : x ∈ Dm,n}. Recall

that for any n + 1 distinct points x1, . . . , xn+1 ∈ R, ∩n+1
i=1 Ωn

xi
= ∅. Also recall that P [Ωn

x] ≥ 1/m

for all x ∈ Dm,n. Thus it follows from Lemma OA–4 that |Dm,n| ≤ mn. Hence each set Dm,n is

finite, and therefore {x ∈ R : P[x ∈ D(ω)] > 0} = ∪m,n∈ND
m,n is countable. �

OA–4 Proof of Proposition 4

Proposition 4. Consider a family of distributions {H(m, ·) : m ∈ M ⊂ R}, where m =
∫

xH(m, dx)

is the mean of H(m, ·), M is closed, and H(m, ·) is continuous in m with respect to the topology of

weak convergence. Suppose that {Y k} and {F k} as in Definition 1 satisfy F k(ω, ·) = H(Uk(ω), ·)

w.p.1, where Uk := E[Y k+1 | Fk]. Also suppose that supk≥0 E[(Y k+1)2 | Fk] < Z w.p.1, for some

integrable random variable Z. Then {Ĥk} in (13)–(14) is a good forecasting method for {Y k}.

Proof. Note initially that, sinceH is continuous in the first argument andMk is (F , B)-measurable,

it follows that Ĥk is (F ,B)-measurable for all k, i.e., Ĥk is a random distribution function.

Let

Sn :=
n

∑

k=1

(Y k − Uk−1) .

Note that {Sn} is a martingale with respect to {Fn}, because E|Sn| < ∞ and E[Sn | Fn−1] =

E[Y n−Un−1 | Fn−1]+E[Sn−1 | Fn−1] = E[Y n | Fn−1]−Un−1 +Sn−1 = Sn−1. In addition, E[(Y k−
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Uk−1)2] = E[(Y k)2] − E[(Uk−1)2] ≤ E[(Y k)2] ≤ E[Z], and consequently

∞
∑

k=1

E[(Y k − Uk−1)2]

k2
≤

∞
∑

k=1

E[Z]

k2
< ∞ .

It follows from a strong law of large numbers for martingales (Chow 1967) that limn→∞ Sn/n = 0

w.p.1, that is, there is a set Ω′′ ⊂ Ω such that P[Ω′′] = 0 and limn→∞ Sn(ω)/n = 0 for all ω ∈ Ω\Ω′′.

Since Mn := (1/n)
∑n

k=1 Y
k, it follows that

Mn(ω) −
1

n

n
∑

k=1

Uk−1(ω) → 0 for all ω ∈ Ω \ Ω′′. (OA–13)

Let Ω′′′ := ∪k≥1{ω ∈ Ω : F k(ω, ·) 6= H(Uk(ω), ·)} ∪ {ω ∈ Ω : supk≥0 E[(Y k+1)2 | Fk](ω) ≥

Z(ω)}, and observe that P[Ω′′′] = 0. Then, for all ω ∈ Ω∗ \ Ω′′′, H(Uk(ω), ·) = F k(ω, ·)
w
→ F ∗(ω, ·).

In addition, for such ω, supk≥0

∫

x2F k(ω, dx) < Z(ω), and hence by Theorem 4.5.2 of Chung (1974),

Uk(ω) =

∫

xH(Uk(ω), dx) =

∫

xF k(ω, dx) →

∫

xF ∗(ω, dx) =: U(ω) for all ω ∈ Ω∗ \ Ω′′′.

(OA–14)

Therefore, for all ω ∈ Ω∗ \ Ω′′′, it holds that F ∗(ω, ·) = H(U(ω), ·), because H(m, ·) is continuous

in m.

Let Ω′ = Ω′′ ∪ Ω′′′, and observe that P[Ω′] = 0. Then Mk(ω) → U(ω) for all ω ∈ Ω∗ \ Ω′

by (OA–13) and (OA–14). Again using the continuity of H(m, ·) in m, it follows that Ĥk(ω, ·) :=

H(Mk(ω), ·)
w
→ H(U(ω), ·) = F ∗(ω, ·) for all ω ∈ Ω∗ \ Ω′, which proves that {Ĥk} is a good

forecasting method for {Y k}. �

OA–5 Remark Regarding Proposition 5

We briefly explain the difficulties in obtaining results for cases not covered by the proposition.

In the β < 1 case, note that f j > 1 for all j. Thus, if α > 0, then gk >
∑k

j=m α/j and hence

gk → ∞ as k → ∞. If α < 0, then gk <
∑k

j=m α/j and hence gk → −∞ as k → ∞. Thus, if α 6= 0,

then even if we use the martingale convergence theorem to establish that, w.p.1, fkLk − gk → A,

where A is a finite random variable, it does not establish the asymptotic behavior of Lk.

Next consider the case with β > 1. Note that i/(i − 1 + β) ∈ (0, 1) for all i, so fk ∈ (0, 1)

for all k. Let ai := i/(i − 1 + β). Then
∑∞

i=1(1 − ai) =
∑∞

i=1(β − 1)/(i − 1 + β) = ∞. Thus
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fk =
∏k
i=1 ai → 0 as k → ∞. Next, consider

log(fk) =
k

∑

i=1

log

(

i

i− 1 + β

)

=
k

∑

i=1

log

(

1 +
1 − β

i− 1 + β

)

≤
k

∑

i=1

1 − β

i− 1 + β
≤ −(β − 1)

∫ k+1

1

1

x− 1 + β
dx

= −(β − 1) [log(k + β) − log(β)]

= log

[

(

β

k + β

)β−1
]

.

It follows that fk ≤

(

β

k + β

)β−1

and hence

gk

α
=

k
∑

j=1

1

j
f j ≤

k
∑

j=1

1

j

(

β

j + β

)β−1

≤
∞

∑

j=1

1

j

(

β

j + β

)β−1

< ∞.

In addition {gk} is non-decreasing, and thus gk → ḡ as k → ∞, where |ḡ| < ∞. Therefore, if

supk E|fkLk−gk| <∞, then w.p.1, fkLk−gk → A as k → ∞, where A is a finite random variable.

Then fkLk → B as k → ∞, where B is a finite random variable. Recall that fk ∈ (0, 1) for all k,

and fk → 0 as k → ∞. Thus, if B(ω) < 0, then Lk(ω) → −∞; and if B(ω) > 0, then Lk(ω) → ∞.

However, if B(ω) = 0, then we need more information to determine the asymptotic behavior of Lk.

OA–6 Proof of Lemma 4

Lemma 4. Consider a sequence of distribution functions {F k} ⊂ P(R) such that F k
w
→ F ∈ P(R).

For γ ∈ (0, 1), let [qk, Qk] := (F k)−1(γ), that is, [qk, Qk] denotes the set of γ-quantiles of F k

[cf. (2)], and let [q,Q] := F−1(γ). Then, q ≤ lim infk→∞ qk ≤ lim supk→∞Qk ≤ Q. That is, for

any sequence {ξk} of γ-quantiles of F k, d(ξk, F−1(γ)) → 0 as k → ∞.

Proof. Consider any q′ < q. We show that for all k sufficiently large, qk > q′. Let q∗ ∈ (q′, q)

be a continuity point of F . Then F (q∗) < γ, and F k(q∗) → F (q∗) as k → ∞, and thus for all

k sufficiently large, F k(q′) ≤ F k(q∗) < γ. Hence q′ < qk for all k sufficiently large, and thus

q ≤ lim infk→∞ qk. It follows by a similar argument that lim supk→∞Qk ≤ Q. �

OA–7 More on Stochastic Approximation

In this section we show that, under appropriate assumptions, if the distribution of the observed

quantity depends on the protection level and if Lk is updated according to (36), then G(Lk, Lk)

converges to γ. It follows that if Lk converges then it converges to a random variable L∗ that

satisfies P(L∗ ∈ G−1(L∗, γ)) = 1. In this section we assume that G(ℓ, x) = 0 for all x < 0 and all

ℓ ∈ R, and therefore Xk ≥ 0 w.p.1.
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The following result on the convergence of stochastic approximation iterations is given in Propo-

sition 4.1 of Bertsekas and Tsitsiklis (1996).

Proposition OA–1. Consider the random sequences {Sk}∞k=1 and {Lk}∞k=0 in Rn that satisfy

Lk+1 = Lk + ξkS
k+1, where {ξk}

∞
k=0 is a deterministic nonnegative step size sequence that satisfies

∑∞
k=0 ξk = ∞ and

∑∞
k=0 ξ

2
k <∞. Let Fk denote the σ-algebra generated by S1, . . . , Sk, L0, . . . , Lk.

Consider a function V : Rn 7→ R+ with the following properties:

1. ∇V is Lipschitz continuous on Rn.

2. There is a constant c > 0 such that, w.p.1,

−∇V (Lk)TE[Sk+1 | Fk] ≥ c‖∇V (Lk)‖2

for all k.

3. There exist constants K1,K2 > 0 such that, w.p.1,

E[‖Sk+1‖2 | Fk] ≤ K1 +K2‖∇V (Lk)‖2

for all k.

Then the following hold w.p.1:

1. V (Lk) converges to a random variable V ∗ as k → ∞.

2. ∇V (Lk) → 0 as k → ∞.

3. Every limit point L∗ of {Lk} satisfies ∇V (L∗) = 0.

Next we construct a potential function V to study the convergence of (36). Note that by the

assumptions we make on G in this section, we have that F (ℓ) = G(ℓ, ℓ) = 0 if ℓ < 0. We also make

the following assumption:

Assumption (B2) The function F is Lipschitz continuous, i.e., there exists an M > 0 such that

|F (ℓ1) − F (ℓ2)| ≤M |ℓ1 − ℓ2| for all ℓ1, ℓ2 ∈ R.

This essentially says that the rate of change of G(ℓ, ℓ) with respect to ℓ is bounded for all ℓ.

Assumption (B2) is satisfied, for instance, if

G(ℓ, x) = 1 − e−x/m(ℓ), x ≥ 0, (OA–15)

for ℓ ≥ 0, and G(ℓ, ·) = G(0, ·) for ℓ < 0, i.e., negative protection levels have the same effect as ℓ = 0.

Here m(ℓ) > 0 for all ℓ ≥ 0 and r(ℓ) := ℓ/m(ℓ) is Lipschitz continuous on [0,∞). Indeed, note that

if ℓ1, ℓ2 < 0 then |F (ℓ1) − F (ℓ2)| = 0, and if ℓ1 < 0 ≤ ℓ2 then |F (ℓ1) − F (ℓ2)| = |F (0) − F (ℓ2)|, so
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it suffices to check that F is Lipschitz continuous on [0,∞), which is indeed the case, because for

ℓ1, ℓ2 ≥ 0, we have |F (ℓ1) − F (ℓ2)| = |e−r(ℓ2) − e−r(ℓ1)| ≤ |r(ℓ2) − r(ℓ1)| since r(ℓ1), r(ℓ2) ≥ 0.

One choice for m(ℓ) that satisfies the above conditions is

m(ℓ) := a1 − a2e
−a3ℓ (OA–16)

where a1 > a2 ≥ 0 and a3 ≥ 0. If the observed quantity X has distribution specified by (OA–15)–

(OA–16), then it has properties that so-called “unconstrained demand” for high-price tickets could

reasonably be expected to have (it is immaterial how this unconstraining is done — it only matters

that it results in X). For instance, m(ℓ) increases in ℓ and approaches a constant as ℓ→ ∞, which

is an appealing property since one would not expect the mean demand to grow unboundedly with

increasing protection levels.

To see that (OA–16) makes r Lipschitz continuous, note that

|r′(ℓ)| =

∣

∣

∣

∣

a1 − a2e
−a3ℓ − ℓ(a2a3e

−a3ℓ)

(a1 − a2e−a3ℓ)2

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

a1 − a2e−a3ℓ

∣

∣

∣

∣

+

∣

∣

∣

∣

ℓ(a2a3e
−a3ℓ)

(a1 − a2e−a3ℓ)2

∣

∣

∣

∣

≤

∣

∣

∣

∣

1

a1 − a2

∣

∣

∣

∣

+

∣

∣

∣

∣

ℓ(a2a3e
−a3ℓ)

(a1 − a2)2

∣

∣

∣

∣

≤
1

a1 − a2
+

a2e
−1

(a1 − a2)2
.

The final expression follows from the fact that ℓe−a3ℓ is maximized over [0,∞) at ℓ = 1/a3.

At this point we need the following assumption:

Assumption (B3) The quantity ν := minℓ∈R

∫ ℓ
0 [F (s) − γ] ds is finite.

When ℓ < 0, we interpret the integral in the above expression for ν as −
∫ 0
ℓ . Thus, for any

ℓ < 0,
∫ ℓ
0 [F (s) − γ]ds = −

∫ 0
ℓ [F (s) − γ]ds = −

∫ 0
ℓ [0 − γ]ds = −ℓγ > 0. Hence, Assumption (B3)

holds, for example, if there exists an ℓ0 > 0 such that F (ℓ) ≥ γ for all ℓ ≥ ℓ0. For instance,

this is the case when (OA–15)–(OA–16) specify the distribution of the observed quantity, since

F (ℓ) ≥ γ ⇔ ln(1 − γ) ≥ −r(ℓ) ⇔ −m(ℓ) ln(1 − γ) ≤ ℓ, which does indeed hold for ℓ sufficiently

large. Under the assumptions of van Ryzin and McGill (2000), Assumptions (B2) and (B3) hold.

Specifically, Assumption (B3) holds since it is always the case that F (ℓ) ≥ γ for all ℓ large enough

when G does not depend on ℓ.

Consider the function V : R 7→ R+ defined by

V (ℓ) :=

∫ ℓ

0
[F (s) − γ] ds − ν. (OA–17)

Next we verify that V satisfies the conditions in Proposition OA–1. Note that V ′(ℓ) = F (ℓ) − γ.

1. V ′ is Lipschitz continuous, since by Assumption (B2) F is Lipschitz continuous.

2. Note from (36) that Sk+1 = γ − I{Xk+1≤Lk}. Thus

E[Sk+1 | Fk] = γ − P[Xk+1 ≤ Lk |Lk] = γ −G(Lk, Lk) = γ − F (Lk) = −V ′(Lk).
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3. Note that Sk+1 ∈ (−1, 1) w.p.1, and thus there exist constants K1,K2 > 0 such that

E[(Sk+1)2 | Fk] ≤ K1 +K2[V
′(Lk)]2

Recall that the stepsizes ξk satisfy
∑

k ξk = ∞ and
∑

k ξ
2
k <∞, and thus we obtain the conclusions

of Proposition OA–1. Specifically, we have the following.

Proposition OA–2. Suppose that Assumptions (B2) and (B3) hold and that the protection levels

are updated according to (36). Then G(Lk, Lk) → γ w.p.1, and every limit point L∗ of {Lk} satisfies

G(L∗, L∗) = γ, that is, L∗ ∈ G−1(L∗, γ).

Note that Propositions 8 and 9 require the existence of a deterministic quantity ℓ∗ that satisfies

assumption 3 in Proposition 8 or Assumption (B1) respectively, and that convergence of Lk to this

deterministic quantity ℓ∗ is then established. In contrast, Propositions OA–1 and OA–2 do not

require the existence of such a deterministic quantity, and do not establish convergence of Lk.

OA–8 Proofs for Stochastic Comparisons and Pathwise Comparisons

Lemma OA–5. For any two P(R)-valued random elements H1 ∼ P1 and H2 ∼ P2, H1 �st H2

implies that P1[H1(x) ≥ α] ≥ P2[H2(x) ≥ α] for all x, α ∈ R.

Proof. Fix any x, α ∈ R, and let f : P(R) 7→ R be given by f(h) := −I{h(x)≥α}. Clearly f is

bounded, and it follows from the characterization of ≤st that f is nondecreasing. Moreover, by the

argument in the proof of Proposition 17(v) we have that f is measurable.

Consider any two P(R)-valued random elements H1 �st H2. Then it follows that

P1[H1(x) ≥ α] = −EP1
[f(H1)] ≥ −EP2

[f(H2)] = P2[H2(x) ≥ α].

�

To simplify the exposition below, suppose that Lk and Lk are chosen to be the smallest elements

of the set of γ-quantiles of Ĥk and Ĥ
k

respectively, that is, Lk ≡ min
{

x ∈ R : Ĥk(x) ≥ γ
}

and

Lk ≡ min
{

x ∈ R : Ĥ
k
(x) ≥ γ

}

.

Lemma OA–6. Suppose that G(ℓ, ·) ≤st G(ℓ, ·) for all ℓ ≤ ℓ, and that the empirical distribution

is used for both Ĥ and Ĥ, that is Ĥk(x) := k−1
∑k

j=1 I{Xj≤x} and Ĥ
k
(x) := k−1

∑k
j=1 I{Xj≤x}. If

Ĥ
k
�st Ĥ

k, then

Lk ≤st Lk

G(Lk, ·) �st G(Lk, ·)

Xk+1 ≤st Xk+1

Ĥ
k+1

�st Ĥk+1
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Proof. Suppose {Ĥ
k
, Lk, Xk} is defined on probability space (Ω,F ,P), and let E denote expec-

tation with respect to P. Suppose Ĥ
k
�st Ĥ

k. Then it follows from Lemma OA–5 that for all

x ∈ R,

P[Lk ≤ x] = P[Ĥ
k
(x) ≥ γ] ≥ P[Ĥk(x) ≥ γ] = P[Lk ≤ x].

That is, Lk ≤st L
k. By assumption, G(ℓ, ·) ≤st G(ℓ, ·) for all ℓ ≤ ℓ, and thus it follows easily from

Kamae et al. (1977), Theorem 1 [in particular, the equivalence of (i) and (iv)], that G(Lk, ·) �st

G(Lk, ·). For h ∈ P(R), define ℓ(h) = min{x ∈ R : h(x) ≥ γ}. Then ℓ(h) ≤ ℓ(h) for all h ≤st h.

Hence, for h ≤st h it holds that

P[Xk+1 ≤ x|Ĥ
k

= h] = G(ℓ(h), x) ≥ G(ℓ(h), x) = P[Xk+1 ≤ x|Ĥk = h].

Since Ĥ
k
�st Ĥ

k, it now follows from Proposition 1 of Kamae et al. (1977) that Xk+1 ≤st X
k+1

and (Xk+1, Ĥ
k
) ≺ (Xk+1, Ĥk) where ≺ denotes the usual stochastic order with the coordinate-

wise partial ordering on R × P(R) — see page 901 of Kamae et al. (1977). Note that Ĥ
k+1

=

ηk(X
k+1, Ĥ

k
) and Ĥk+1 = ηk(X

k+1, Ĥk) where ηk : R × P(R) 7→ P(R) is defined by

ηk(x, h) =
k

k + 1
h+

1

k + 1
I{x≤ ·}

and observe that ηk is increasing on R×P(R); i.e., ηk(x, h) ≤st η(x, h) when x ≤ x and h ≤st h. It

follows that for bounded increasing f : P(R) 7→ R,

E[f(Ĥ
k+1

)] = E[(f ◦ ηk)(X
k+1, Ĥ

k
)] ≤ E[(f ◦ ηk)(X

k+1, Ĥk)] = E[f(Ĥk+1)],

where the inequality follows from the fact that f ◦ ηk is bounded and increasing on R × P(R) and

(Xk+1, Ĥ
k
) ≺ (Xk+1, Ĥk). Hence, Ĥ

k+1
�st Ĥ

k+1. �

Proposition 12 follows from Lemma OA–6.

Proposition 12 (Stochastic comparison with empirical distributions). Suppose G(ℓ, ·) ≤st

G(ℓ, ·) for all ℓ ≤ ℓ, and the empirical distribution is used for both Ĥ and Ĥ, that is, Ĥk(x) :=

k−1
∑k

j=1 I{Xj≤x} and Ĥ
k
(x) := k−1

∑k
j=1 I{Xj≤x}. If L0 ≤st L

0, then

G(Lk, ·) �st G(Lk, ·)

Xk+1 ≤st Xk+1

Ĥ
k+1

�st Ĥk+1

Lk+1 ≤st Lk+1

for all k = 0, 1, . . . .
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Proposition 13 (Stochastic comparison with affine updates). Suppose that µ : R 7→ R

satisfies µ(ℓ) ≤ ℓ for all ℓ. Suppose that G(ℓ, ·) = G(µ(ℓ), ·), and that G(ℓ, ·) ≤st G(ℓ, ·) for

all ℓ ≤ ℓ. Suppose that Ĥk = G(Mk, ·) and Ĥ
k

= G(Mk, ·), where Mk = k−1
∑k

j=1X
j and

Mk = k−1
∑k

j=1X
j. If L0 ≤st L

0, then

G(Lk, ·) �st G(Lk, ·) (OA–18)

Xk+1 ≤st Xk+1 (OA–19)

Mk+1 ≤st Mk+1 (OA–20)

Ĥ
k+1

�st Ĥk+1 (OA–21)

Lk+1 ≤st Lk+1 (OA–22)

for all k = 0, 1, . . . .

Proof. The proof is by induction; (OA–18)–(OA–22) hold for k = 0. For the inductive step,

suppose that (OA–18)–(OA–22) hold for k−1 and consider a general k. Since Lk ≤st L
k, Theorem 1

of Kamae et al. (1977) implies that µ(Lk) ≤st L
k and G(µ(Lk), ·) �st G(Lk, ·). Hence, G(Lk, ·) �st

G(Lk, ·). For m ≤ m, we have

P(Xk+1 ≤ x|Mk = m) = G( ℓ(G(m, ·)) , x ) ≥ G( ℓ(G(m, ·)) , x ) = P(Xk+1 ≤ x|Mk = m),

where ℓ(h) = min{x ∈ R : h(x) ≥ γ} for h ∈ P(R). Proposition 1 of Kamae et al. (1977) implies

that Xk+1 ≤st X
k+1 and (Xk+1,Mk) ≺ (Xk+1,Mk), where ≺ here denotes the usual stochastic

order on R2. Observe that Mk+1 = ϕk(X
k+1,Mk) and Mk+1 = ϕk(X

k+1,Mk) where

ϕk(x,m) =
k

k + 1
m+

1

k + 1
x.

It follows that Mk+1 ≤st M
k+1, and hence Ĥ

k+1
�st Ĥ

k+1. Finally, P[Lk+1 ≤ x] = P[Ĥ
k+1

(x) ≥

γ] ≥ P[Ĥk+1(x) ≥ γ] = P[Lk+1 ≤ x], so Lk+1 ≤st L
k+1. �

Proposition 14 (Pathwise comparison). Consider any ω ∈ Ω such that, for any k, Lk(ω) ≤

Lk(ω) implies that Xk+1(ω) ≤ Xk+1(ω). Suppose that the forecasting method used in both sequences

satisfies the following condition for all k: If (X1(ω), . . . , Xk(ω)) ≤ (X1(ω), . . . , Xk(ω)), then

Ĥ
k
(ω, ·) ≤st Ĥ

k(ω, ·). If L0(ω) ≤ L0(ω), then

Xk(ω) ≤ Xk(ω)

Ĥ
k
(ω, ·) ≤st Ĥk(ω, ·)

Lk(ω) ≤ Lk(ω)

for all k = 1, 2, . . . .
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Proof. The result follows from induction on k. �

References

Bertsekas, D. P., J. N. Tsitsiklis. 1996. Neuro-Dynamic Programming . Athena Scientific, Belmont,

MA.

Billingsley, P. 1968. Convergence of Probability Measures. John Wiley & Sons, New York.

Chow, Y. S. 1967. On a strong law of large numbers for martingales. Ann. Math. Statist. 38(2)

610.

Chung, K. L. 1974. A Course in Probability Theory . 2nd ed. Academic Press, New York.

Dudley, R. M. 2002. Real Analysis and Probability . Cambridge Univ. Press, Cambridge, UK.

Kamae, T., U. Krengel, G. L. O’Brien. 1977. Stochastic inequalities on partially ordered spaces.

Ann. Probab. 5(6) 899–912.

van Ryzin, G., J. McGill. 2000. Revenue management without forecasting or optimization: An

adaptive algorithm for determining airline seat protection levels. Management Sci. 46(6) 760–

775.

OA–16


