Data Quality Verification & Sensor Calibration for WIM Systems

Chen-Fu Liao & Gary Davis
Department of Civil Engineering
University of Minnesota

TRB 2012 NATMEC Conference
June 4-7, Dallas, Texas

Acknowledgements

- RITA, USDOT and UMN ITS Institute
- MnDOT – Ben Timerson & Staff in Transportation Data & Analysis
- Sushanth Kumar – Graduate Research Students
- Minnesota Traffic Observatory, UMN
Outline

- Literature Review
- WIM Data Monitoring
- Mixture Model – GVW9
- Cumulative Sum (CUSUM) Methodology
- Analysis Results
- Concluding Remarks

Dahlin, 1992

Recommended 3 measures for WIM quality assurance

1. Class 9 steering axle weights
 - < 32 kips: 8.4 kips
 - 32-70 kips: 9.3 kips
 - > 70 kips: 10.4 kips

2. Class 9 GVW
 - 2 peaks
 - unloaded: 28-32 kips
 - fully loaded: 70-80 kips

3. Flexible ESAL factor
 - compare with “properly calibrated system”
Han, Boyd, Marti, 1995

FHWA-LTPP study

Formal use of statistical quality control methods to monitor WIM systems

Dahlin's 3 classes: unloaded, partially loaded, fully loaded

Presented Shewhart charts for average and range of GVW for unloaded class

Discussed automatic re-calibration
WIM Station 37 (07/17/2010), Lane 1
Shapiro-Wilk Normality Test – QQ Plot

GVW < 32 kips, w=0.964

GVW 32 ~ 70 kips, w=0.503

GVW > 70 kips, w=0.406

Theoretical Quantiles

Ott and Papagiannakis, 1996

Pilot study, connected with NCHRP study of WIM calibration

Investigated using class 9 steering axle weights for monitoring
2 subgroups
< 50 kips and > 50 kips

2 components to variance
“fleet” - estimated from static weight data
“dynamic” - estimated from VESYM simulation
Correction for air resistance effects

Displayed 2 plots of individual steering axle weights
measures falling with 99% CI
measures drifting in/out of 99% CI

“at this time an inexpensive WIM calibration system has not been developed”

Four “most common” statistics to monitor WIM health

- class 9 front axle weight
- class 9 GVW distribution
- class 9 axle spacing
- traffic volume by vehicle class

Traffic Data Editing Procedures, 2002

Pooled Fund Study SPR-2(182)

Described empirical procedure to locating peaks in GVW weight distributions for class 9 & 11

Four ‘Expected Peak’ rules (by lane) – 56, 57, 58, 59
 #56 - unloaded GVW9: 27 - 30 kips
 #58 - loaded GVW9: 72 - 80 kips

 Current estimate of peak central tendency outside specified historical limits
Nichols and Cetin, 2007

- Introduced **multi-component mixture models** to characterize class 9 GVW distribution
- Overall class 9 GVW population consists of several homogeneous, normally distributed, sub-populations
- Used **EM algorithm** to estimate subpopulation parameters

<table>
<thead>
<tr>
<th>Sub-pop</th>
<th>mean</th>
<th>std. dev.</th>
<th>proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>unloaded</td>
<td>30.9</td>
<td>3.4</td>
<td>0.123</td>
</tr>
<tr>
<td>Partial load</td>
<td>53.3</td>
<td>13.6</td>
<td>0.556</td>
</tr>
<tr>
<td>Full load</td>
<td>76.4</td>
<td>3.1</td>
<td>0.321</td>
</tr>
</tbody>
</table>

Research Focus

- Detecting subtle calibration drifts and other sensor errors
- Mixture modeling using EM technique to model GVW9 distribution
- Formal monitoring using statistical quality control
3 Related Problems

WIM monitoring:
Requires data model characterizing normal operation

WIM diagnosis:
Prior identification of operational modes
Data model characterizing each mode

WIM calibration:
Diagnose mis-calibration
Compute calibration factor
(needed for data adjustment?)

Mixture Model

\[f(y) = \sum_{i=1}^{n} \lambda_i f_i(y) = \lambda_1 f_1(y) + \lambda_2 f_2(y) + \lambda_3 f_3(y) + \cdots \]

Component Density Function
Mixing Property

Nichols and Cetin, 2007
Mixture Model

Nichols and Cetin, 2007

Mixture Model
Expectation Maximization (EM)

Component	Lower Bound (kips)	Mean (kips)	Upper Bound (kips)	SD (kips)	Proportion
1 - Unloaded | 32.6 | 33.0 | 33.5 | 4.1 | 0.25
2 - Partially loaded | 54.9 | 55.8 | 58.7 | 13.5 | 0.475
3 - Fully loaded | 75.6 | 76.0 | 76.4 | 3.8 | 0.275
Expectation Maximization (EM)
GVW9 Mean with 95% CI

Station 37 Class 9 Lane 2 EM Mean for calibration date 37101210

GVW Mean (kips)

Mean1
Mean2
Mean3
confidence interval

GVW9 Monitoring
Fully Loaded

WIM 37 Lane 1 GVW9 Group 3 Estimation (95% CI)
WIM Station 37 (10/19/2009 ~ 08/10/2010)

Class 9 Daily Steering Axle Weight

WIM Diagnosis
Loadometer Scale

\[\log_{10}\left(\frac{\text{steering axle load}}{\text{axle space #1}}\right) = a + b \times \log_{10}(\text{axle space #1}) \]
Cumulative Sum
(CUSUM)

- A commonly used quality control method to detect deviations from benchmark values
- Detect small but persistent deviations
- Monitor change detection
- A statistical process control (SPC) tool for quality improvement
- Detect level shifts in auto-correlated noise

\[C_n = \sum_{i=1}^{n} (X_i - \mu) \quad \quad \quad \quad \quad C_n = C_{n-1} + (X_i - \mu) \]
Adjusting CUSUM

\[\bar{x}_1 = \frac{\sum_{t=1}^{n_0} \mu_1}{n_0} \quad \bar{x}_{j+1} = \bar{x}_j + \frac{(\mu_{j+n_0} - \bar{x}_j)}{j + n_0} \]

\[\sigma_j^2 = \frac{w_j}{j + n_0 - 1} \]

\[w_1 = \sum_{i=1}^{n_0} (\mu_i - \bar{x}_1)^2 \quad w_{j+1} = w_j + (j + n_0 - 1) \left(\frac{(\mu_{j+n_0} - \bar{x}_j)^2}{j + n_0} \right) \]

\[T_j = \frac{\mu_j - \bar{x}_j}{\sigma_j} \quad p_j = \text{tcdf} \left(T_j, \frac{j + n_0 - 1}{j + n_0}, j + n_0 - 2 \right) \]

\[U_j = \text{norminv}(p_j, 0, 1) \quad \text{adj.cusum}_j = \sum_{k=1}^{j} U_k \]

WIM Diagnosis

Adjusting CUSUM

Normal Inverse
WIM Diagnosis

Decision Interval

\[S_0^+ = 0 \quad S_n^+ = \max (0, S_{n-1}^+ + U_n - k) \]

\[S_0^- = 0 \quad S_n^- = \min (0, S_{n-1}^- + U_n + k) \]

Out of control allowance

\[k = \frac{5\% \text{ of Average GVW}}{2 \times \sigma} \]

WIM GVW9 Analysis

Fully Loaded (Lane #1)
WIM GVW9 Analysis
Unloaded (Lane #2)

CUSUM Deviation vs. Calibration Adjustment

Calibration Adjustment vs. CUSUM Deviation

\[y = 0.0046x + 0.0213 \]

\[R^2 = 0.0113 \]
Summary

- A mixture modeling technique using Expectation Maximization (EM) algorithm
- GVW9, SXW or FXW and FXS were analyzed for 4 WIM stations
- Use adjusting CUSUM methodology for WIM data diagnosis and drift detection together with DI (h) and reference value (k)
- Adjusting CUSUM methodology was able to detect the sensor drifts prior to the actual calibration
- Did not find any relationship between CUSUM deviation and historical calibration adjustment

Ongoing and Future Work

- Better understand current calibration process & procedures
- Validate adjusting CUSUM methodology by select a test site for implementation and compare drift detection with current calibration process
- Quantify the impact of vehicle speed, weather, and pavement condition to the WIM sensors
- Estimate calibration factors
Thank You!

Chen-Fu Liao
Minnesota Traffic Observatory
Department of Civil Engineering
University of Minnesota
(612) 626-1697
cliao@umn.edu