Financial Analysis Primer

Hitoshi Sakamoto
Humphrey Institute of Public Affairs
University of Minnesota

Overview

• Time value of money
• Interest formulas
• Project evaluations
• Inflation and CPI
• Financial risk and financing

Time Value of Money

~ Today is worth more than tomorrow ~

Lender Makes an Investment

• Letting somebody use your money at a given time.
• Loses his/her purchase power for that time.
• Gets compensated when the money is returned at a later time.

Borrower Borrows

• Can consume product/service using somebody else’s $.
• Gains his/her purchase power for that time.
• Needs to compensate the lender when the money is returned at a later time.

Time Value of Money

• Comparison:
 --invest today’s $1 today
 --receive tomorrow’s $1 tomorrow
• Your money loses purchase power over time due to inflation.
• Today is worth more than future.
• Tomorrow is available only if today is survived.
Interest Formulas

~ “Present value” of a project ~

Interest Rate

- A rate of change of a $ value.
- Other rates:
 - Discount rate
 - Inflation rate
 - (Internal) rate of return

“Present Value”

- Simple example:
 - What is the present value, \(P \), of next year’s $11 (=F), given \(r=10\% \)?

 \[
 P = \frac{11\$}{1 + 0.1} = 10\$
 \]

“Present Value” in general

- What is the present value, \(P \), of $ in the future, \(F \), that is \(n \) periods away, given \(r \)?

 \[
 P = \frac{F}{(1+r)^n}
 \]

Cash Flow Diagram

- To calculate present value
- Depend on types of:
 - payments
 - single, equal and gradient
 - interest compounding
 - discrete (and continuous)

© 2002 H. Sakamoto
Energy and Environmental Policy
PA6721 Money - 7

© 2002 H. Sakamoto
Energy and Environmental Policy
PA6721 Money - 8

© 2002 H. Sakamoto
Energy and Environmental Policy
PA6721 Money - 9

© 2002 H. Sakamoto
Energy and Environmental Policy
PA6721 Money - 10

© 2002 H. Sakamoto
Energy and Environmental Policy
PA6721 Money - 11

© 2002 H. Sakamoto
Energy and Environmental Policy
PA6721 Money - 12
1) Single Payment

\[P = \frac{F}{(1+r)^n} \]

r: interest rate

2) Equal Payments

• Equivalent of equal future payments

\[P = \frac{(1+r)^n - 1}{r(1+r)^n} A \]

r: interest rate

3) Gradient Payments 1

• Uniform gradient

\[P = \left[1 - \frac{n}{r (1+r)^n - 1} \right] G \]

r: interest rate

4) Gradient Payments 2

• Geometric gradient

\[P = \left[\frac{(1+g')^n - 1}{g'(1+g')^n} \right] \frac{F_1}{1+g} \]

where \(g' = \frac{1+r}{1+g} - 1 \)

5) Continuous Compounding

• Uniform gradient

\[P = \left[1 - \frac{e^r - 1}{e^{rn} - 1} \right] G \]

r: interest rate

6) In Reality ...

• Cash flow are more complicated:
Project Evaluations

~ Comparing Alternatives ~

Some Techniques

- Net Present Value (NPV)
- Benefit-Cost ratio
- Internal Rate of Return (IRR)
- Payback period
- Capitalized equivalent
- Capital recovery with return
- Project balance

Net Present Value, NPV

- Sum of the present value of net cash flow in each of the future periods

Calculating NPV

- Equivalent present value of a project

\[
NPV = \sum_{t=0}^{n} \frac{R_t - C_t}{(1+r)^t}
\]

- Others: Annual equivalent and net future value

Benefit-Cost Ratio, BCR

- Ratio of present-value benefit to present-value cost

\[
\frac{PB}{PC}
\]
Internal Rate of Return, IRR

- Interest rate that makes NPV zero.
 - Choose a project with the lowest IRR.
 - For a project that requires advanced investment

\[
NPV = 0 = \sum_{t=0}^{n} \frac{R_t - C_t}{(1 + i^*)^t}
\]

where \(i^*\) is IRR

Implications to Public Projects

- Financial analysis becomes economic analysis.
- Non-monetary benefits must be included, as well as non-monetary costs.
- BCR analysis becomes tricky!
 - Some costs may be considered negative benefits, and vice versa.
 - NPV and IRR methods work fine.

Inflation and CPI

- ~real interest rate~

Consumer Price Index, CPI

- Price index of retail goods/services for a given year.
- Price index is a ratio of a price in a given year to that in the base year.

Inflation

Rate of increase in CPI over the period of interest

For year \(t\), the inflation rate, \(f\), is calculated by:

\[
 f_t = \frac{CPI_t - CPI_{t-1}}{CPI_{t-1}}
\]

where CPI is determined at the end of each year.

Real Interest Rate, \(r'\)

- Also called:
 - inflation-free interest rate
 - constant-dollar interest rate

\[
r' = \frac{1 + r}{1 + f} - 1
\]

- The nominal interest rate, \(r\), must be greater than inflation rate, \(f\), in order for a positive real interest rate.
Financial Risks

~ Risk Management in Project Financing ~

What is risk?

- Probability of an adverse effect
 \[\text{Risk} = \text{Magnitude (outcome)} \times \text{Probability} \]

- Hazard x Exposure (in public health)

Uncertainty

- Uncertainty about future
- Range of possible values
 - e.g. Range of possible cost for year t
- Complicates project evaluations
- Sensitivity analysis may be used.

“Expected” Outcome

- Terminology from statistics
- The mean of outcome
- Allows separation of
 - alternative evaluations and
 - risk comparisons
- Risk associated with uncertainty

NPV of a Project with Risk

An example:

<table>
<thead>
<tr>
<th>Outcome</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>0.1</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>NPV [$]</td>
<td>-30,000</td>
<td>10,000</td>
<td>100</td>
</tr>
</tbody>
</table>

Expected NPV of the project, \(E \):

\[
E(\text{outcome}) = 0.1NPV_A + 0.6NPV_B + 0.3NPV_C \\
= -3,000 + 6,000 + 30 \\
= 3,030
\]
Other Techniques

- Sensitivity analysis
- Expected variance
- Monte Carlo analysis
- Decision Trees
- Payoff Matrix
- Maximin/Maximax Rules
- Hurwicz Rule
- Minimax Regret Rule

End of Financial Analysis