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ABSTRACT 

The hydraulic flywheel accumulator, a novel hydro-
kinetic energy storage device, consists of a piston-style 
hydraulic accumulator which rotates at high speed about 
the longitudinal axis.  In comparison to traditional 
accumulator storage, this rotation significantly increases 
energy density and decouples system pressure from 
state-of-charge.  Angular acceleration during operation 
causes the fluid within the device to depart from rigid 
body rotation.  It is important to model the resultant 
three-dimensional flow, as it has implications on viscous 
energy dissipation and transient response of 
accumulator pressure.  The computational cost of a full 
CFD simulation makes it undesirable for modeling and 
optimization.  This paper details the development of a 
simplified quasi-empirical model for fluid behavior in the 
hydraulic flywheel accumulator.   

INTRODUCTION 

BACKGROUND 

Hydraulics are widely used for power transmission in the 
agricultural, industrial, aerospace, mining, and 
construction sectors.  The prevalence of hydraulic 
systems is due largely to the durability, reliability, high 
power density, and low cost of their components.  
Traditionally, energy for hydraulic systems is stored 
pneumatically in an accumulator, which is a pressure 
vessel containing a gas volume and an oil volume 
separated by a piston or bladder.  Adding or extracting 
oil charges or discharges the accumulator by 
compressing or expanding the gas. 
 
Traditional hydraulic accumulators are extremely power 
dense, but have relatively little energy capacity.  Current 
high-performance composite hydraulic accumulators 
offer an energy density of about        

1)
, two orders of 

magnitude lower than advanced electrochemical 
batteries or advanced flywheels

2)
.  This large 

discrepancy makes it difficult for hydraulic power to 
compete with other technologies in mobile applications 
with energy regeneration, where energy density is 
important. 
 
In addition to being quite limited in energy density, the 
utility of a traditional hydraulic accumulator is hindered 
by the fact that its pressure is coupled to the amount of 
energy stored.  Consequently, all hydraulic system 
components must be sized for the high flow rates that 
are required to meet a power demand at low pressure.  

The hydraulic flywheel accumulator (HFA) proposed by 
Van de Ven

3)
 has the potential to overcome both of the 

major drawbacks of a traditional hydraulic accumulator, 
significantly increasing energy storage density while 
decoupling system pressure from the state of charge 
(SOC).   

HYDRAULIC FLYWHEEL ACCUMULATOR CONCEPT 

In the most basic sense, the HFA is a piston-style 
accumulator that is spun about its longitudinal axis.  Like 
a traditional accumulator, energy is stored in the 
pneumatic domain by compressing a gas.  At the open 
end of the HFA, a high-speed rotary union allows oil to 
flow in and out of the HFA, adding or extracting hydro-
pneumatic energy.  The HFA also acts as a flywheel, 
storing energy in the kinetic domain by virtue of the 
rotation and the combined inertia,  , of the solid 
container and the internal fluid volume.  A variable 
displacement pump-motor (VDPM) coupled to the closed 
end of the HFA applies torque in order to add or extract 
kinetic energy.  Figure 1 illustrates the concept of the 
HFA.   

 
Figure 1: Hydraulic flywheel accumulator concept

3)
  

 
The quantity of energy stored in the HFA at a given time 
is the sum of a pneumatic term and a kinetic term, as 
shown in Eqn. 1. 
 

                      
       

  
  

 

 
    (1) 

 
Here,         and         are the gas pressure and 

volume at the time when the accumulator is charged, 
and    and   are the gas volume and container angular 

velocity at the time of interest.  The first term on the right 
hand side of Eqn. 1 is an expression for the energy 
stored in a gas that has undergone isothermal 
compression (a reasonable assumption for a foam-filled 
accumulator

4)
); this is identical to the only term that is 

6.1



present in the stored energy equation for a traditional 
accumulator.  The second term in Eqn. 1 is an 
expression for the kinetic energy stored in a rotating 
body.  Equation 1 is written for steady state, a condition 
where the fluid volume is rotating as a rigid body at the 
same angular velocity as the container.  The kinetic 
energy term suggests that increasing the angular 
velocity of the HFA causes a quadratic increase in the 
stored kinetic energy without directly affecting the mass 
of the system.  Clearly, then, utilization of the kinetic 
domain allows for a significant improvement in energy 
density over traditional accumulator storage.   
 
Imposing an angular velocity on the HFA not only 
increases energy storage density, but also leads to 
internal fluid phenomena that can be exploited for an 
additional benefit.  A force balance on a fluid element in 
rigid body rotation yields a radially-dependent parabolic 
oil pressure distribution

3)
.  The practical result of this 

parabolic pressure distribution is that the inlet/outlet 
pressure, which is at the center of the HFA and is the 
pressure experienced by the rest of the hydraulic 
system, is lower than the average pressure of the 
accumulator.  The difference between the average and 
center pressures is proportional to angular velocity.  This 
concept is expressed mathematically as:    
  

           
       

  
  

 

 
     

  (2) 

 
The parameter    refers to system (center) pressure,   is 
fluid density, and    is the inner radius of the container.  
The first term on the right side of the equality represents 
the average accumulator pressure.  Like the stored 
energy equation (Eqn. 1), Eqn. 2 is written for steady 
state.  All parameters on the right hand sides of both of 
these equations are constant throughout the HFA 
operation, except for angular velocity and gas volume.  It 
is therefore useful to consider these two variables as 
fully describing the operating state.  From examination of 
Eqns. 1 and 2, it is easy to see that the two controllable 
operating parameters, angular velocity and gas volume, 
can be independently modulated such that system 
pressure is decoupled from SOC.  
 
MOTIVATION FOR FLUID MODELING 
 
In the application of a hydraulic hybrid passenger 
vehicle, the HFA is subject to an unpredictable and 
highly transient power profile.  Regenerative braking 
makes energy available for addition to the HFA, while 
vehicle acceleration and road loads require extraction of 
energy.  The inertial and pressure responses to a 
transient power profile have implications on performance 
metrics (eg. energy conversion efficiency, pressure 
fluctuation) and necessary design features (eg. wall 
thickness, rated bearing speed).  For purposes of design 
optimization, it is necessary to accurately characterize 
the dynamic response of the HFA to such a transient 
power profile.   
 

The simplest way to simulate HFA performance would 
be to assume the fluid volume behaves as a solid.  In 
this case, the fluid would always be at steady state, 
rotating as a rigid body at the speed of the container.  In 
modeling inertial behavior, Newton’s second law could 
be applied simply using the sum of the fluid and solid 
inertias, and no viscous dissipation would occur.  
Pressure at the fluid inlet could be inferred at any time 
by simply measuring the velocity of the container (which, 
by virtue of the present assumption, would also indicate 
the velocity of the fluid volume).   
 
The assumption that the fluid volume behaves as a solid, 
where no viscous losses are incurred and pressure 
responds instantly to a change in container angular 
velocity, has been used to drive a preliminary design 
optimization

5)
.  By neglecting fluid behavior and viscous 

losses (as well as all other energy loss mechanisms) this 
study aimed to provide only general insight into what an 
optimal HFA design might resemble.  For a detailed 
design optimization, however, these phenomena must 
be included in the performance modeling, and therefore 
a more thorough understanding of transient fluid 
behavior is sought.   
 
Storing energy in two domains leads to two distinct types 
of transients.  Use of the pneumatic domain requires 
changing the volume of oil in the HFA.  While this 
certainly results in interesting transient phenomena by 
altering the inertia of the HFA, it is not the topic of this 
paper, and therefore constant oil volume is implied in all 
of the following discussion.   
 
This paper instead focuses on modeling the transient 
fluid behavior resultant from utilizing the kinetic domain.  
In this mode of energy exchange, the HFA experiences 
angular acceleration or deceleration by the application of 
positive or negative torque.  Leaving exact details for 
later discussion, it is intuitive that, as a torque is applied 
to the container, the fluid volume will not necessarily 
behave as a solid.  Should the container maintain a 
constant angular velocity for a sufficiently long period of 
time, the fluid volume will eventually return to steady 
state. 
 
Understanding the nature by which the fluid volume 
departs from steady state is important for two reasons: 
 

 Fluid behavior impacts the applicability of Eqns. 1 
and 2 to regions of transient operation 

 Viscous dissipation of energy occurs whenever the 
fluid is not rotating as a rigid body 
 

To model transient HFA behavior for any power profile of 
reasonable duration and temporal resolution, full CFD 
would result in far too much computational cost.  This is 
especially true in the context of a heuristic design 
optimization, where the thousands of potential HFA 
designs must be evaluated via simulation

5)
.  The ideal 

model for fluid behavior, therefore, must be accurate 
enough to realistically predict HFA behavior and 
computationally cheap enough that simulation and 



optimization can be carried out in an reasonable amount 
of time.   
 
The remainder of this paper describes the method by 
which the desired model is developed.  The first section 
reviews some theory on rotating flows, then puts forth 
and defends a key assumption for the fluid model.  In the 
next section, the general approach to fluid modeling is 
presented and a dimensional analysis is carried out.  
The following section describes the experimental 
methods and results used to develop the fluid model.  
The final section mates the theory with the experimental 
results and provides an evaluation of the model. 

 
THEORY AND ASSUMPTIONS 
 
EKMAN SPIN-UP THEORY 
 
A rich body of research, which could be collectively 
called “Ekman spin-up theory”, provides valuable insight 
into the expected transient behavior of the fluid volume.  
Most of the research is a variation on the following 
theme:  An axisymmetric fluid is initially rotating at 
steady state when its container is impulsively 
accelerated to a new angular velocity.  Generally, the 
process of fluid spin-down is the reverse of spin-up, so 
the following brief review of Ekman spin-up theory can 
be applied to a container which is impulsively 
accelerated or decelerated.  Figure 2 shows a container 
of finite wall thickness with important dimensions 
labeled.   
 

 
Figure 2: Container and fluid volume with 

dimensions 
 
In the limiting case of an infinitely long (   ) cylindrical 
fluid volume, any departure from fluid rigid body rotation 
manifests itself as a two-dimensional flow relative to the 
container.  In this special case, transport of momentum 
within the fluid is accomplished purely through viscous 
diffusion.  However, for any reasonable set of geometric 
dimensions, the HFA aspect ratio (   ) is far too low for 
infinite length to be a suitable approximation

5)
.   

 
Instead, it turns out that the relative flow during 
transience is quite three-dimensional (though still 
axisymmetric), with the end walls playing an extremely 
important role

6)
.  Due to the no-slip condition, an 

impulsive increase in the container angular velocity 
results in a thin layer of fluid at the walls which rotates 
faster than the core flow.  These thin layers of fluid are 
subject, then, to a centrifugal field that overcomes the 
prevailing pressure gradient (the pressure gradient 
imposed by the rotation of the core flow).  Consequently, 
fluid at the end walls is accelerated radially outward in 
what has become known as an Ekman boundary layer.  
To satisfy continuity, the radial outflow is accompanied 
by an axial inflow to the Ekman layer along the 
longitudinal axis of the cylinder.  Fluid leaving the Ekman 
layer at the outer radius is turned and travels axially 
within the sidewall boundary layer.  Near the meridian, 
the flow is turned again, such that it travels radially 
inward to replace the axial inflow to the Ekman layer.   
 
The radial inflow at the meridian can be envisioned as 
fluid rings which approximately conserve angular 
momentum; as they travel inward, their angular velocity 
increases, tending to spin-up the fluid.  It is clear, then, 
that the dominant mechanism for fluid spin-up is 
advective, not viscous.  As a result, spin-up is 
accomplished much faster than it would be were 
viscosity the dominant mechanism.  Specifically, spin-up 
is complete in a time on the order of 
 

   
 

   
 (3) 

 
where   is the kinematic viscosity of the fluid and   is a 

characteristic angular velocity
6)

.  Generally,   is chosen 
as larger of    and   , the initial and final angular 

velocities, respectively, that define the impulsive spin-up 
event.  Note that the use of upper-case omegas in this 
paper is reserved for constants which describe a spin-up 
event, while lower-case omegas refer to an 
instantaneous and time-varying angular velocity.   
 
For reference, consider a cylindrical container of roughly 
    length and aspect ratio     .  The container is filled 
with hydraulic oil (      ) initially at steady state and is 
impulsively accelerated from its original speed to 5000 
RPM.  Equation 3 predicts (and experiments have 
confirmed

6)
) that spin-up is essentially complete in a time 

on the order of      seconds.  If the end wall Ekman 
effects were not present and momentum exchange was 
accomplished purely via viscous diffusion, spin-up would 

be accomplished on a time scale     .  This turns out to 
be      seconds – three orders of magnitude higher 
than the advective spin-up time. 
 
Though conceptually useful, the theory developed in 
Ekman spin-up literature is insufficient to actually model 
transient HFA behavior.  Scenarios studied in the 
literature analyze discrete spin-up events with well-
defined initial and final states of steady state rotation at 
specified angular velocities.  The present situation is 
quite different, in that an arbitrary power profile (as 
opposed to an angular velocity step change) is the 
simulation input, and steady state rotation may never be 
reached.  To the authors’ knowledge, none of the 



literature treats the energy, which must include viscous 
dissipation, required to accomplish a spin-up event, and 
none attempts to model fluid behavior over an arbitrary 
power profile.  
 
Despite the infeasibility of direct application to a 
simulation, the Ekman spin-up theory will be used to 
justify a key modeling assumption – and several 
extensions thereof – for the development of the HFA 
fluid model.   
 
FLUID RIGID BODY ASSUMPTION 
 
At all times, the fluid volume will be presumed to act 
approximately as a rigid body spinning at angular 
velocity   .  The difference between the fluid angular 

velocity and its container is 
 

         (4) 

 
At steady state,     , but during transience,     .  
The proceeding arguments provide justification for the 
fluid rigid body assumption, which may at first seem 
contradictory to the flow phenomena described in the 
preceding section.   
 
Benton

7)
 provides the following rough approximations for 

the absolute radial, azimuthal, and axial components of 
velocity in the core of the fluid.  The equations are valid 
for the case of an impulsive change in angular velocity of 
the container, from an initial state of rigid-body rotation. 
 

   
 

 
         

 

   
 (5) 

 

                                
(6) 

 

   
     

 
    

(7) 

 
In these equations,   and   are radial location and time.  
It is clear from Eqns. 5 through 7 that, for any 
appreciable angular velocity and fluid viscosity, the 
azimuthal component of fluid velocity is much greater 
than the radial and axial components, which arise only 
due to Ekman circulation.  The absolute kinetic energy in 
the fluid consequently manifests itself primarily in the 
azimuthal flow component.  Therefore, although they are 
essential to the advective nature of fluid spin-up, the 
radial and axial components of fluid velocity will be 
henceforth neglected in quantifying the instantaneous 
amount of kinetic energy stored in the fluid.   
 
Equation 6 offers two important points.  First, azimuthal 
velocity is linearly dependent on radial location and is 
independent of axial and tangential location.  This is the 
definition of rigid body rotation, and therefore Benton’s 
azimuthal velocity equation is the primary justification for 
the fluid rigid body assumption.   
 

The same equation also leads to the first extension of 
the fluid rigid body assumption:  The fluid angular 
velocity exhibits a first-order time response to a change 
in container angular velocity.  In the case of Benton’s 
equation, the change in container angular velocity is 
impulsive.  To make it applicable to a simulation, several 
modifications to Eqn. 6 must be introduced.  Specifically, 
the linear velocity distribution is replaced by a fluid 
angular velocity, the constant       is replaced by the 

variable   , and the time constant defined by Eqn. 3 is 

replaced by a dynamic time constant,   .   
 

  
      

                  
    (8) 

 
The qualifier “dynamic” for    is used to reflect the fact 
that, if Eqn. 8 is applied to each time step in a 
simulation, it is not expected that Eqn. 3 should provide 
an appropriate time constant (indeed, the constant   
does not exist for an arbitrary angular velocity profile).  
Instead, the degree to which the fluid “catches up” during 
a time step is expected to depend on various parameters 
that describe the state of the HFA.   
 
Wiedman

8)
 discusses the scenario where the container 

spins up at a constant finite rate of acceleration.  While 
he does not provide a time constant, he suggests that 
the response of the fluid depends on the parameters in 
Eqn. 3, as well as the rate of acceleration of the 
container,   .  Because our drive cycle is arbitrary, the 
theory presented by neither Benton nor Weidman is 
directly applicable.   
 
The second important extension of the fluid rigid body 
assumption is that the pressure at the center is indicative 
of the kinetic energy contained in the fluid volume.  For 
any flow, the kinetic energy contained in the fluid is 
equal to the volume integral of the specific kinetic 
energy. For a constant-density fluid in rigid body rotation, 
with negligible radial and axial velocity components, this 
becomes 
 

      
 

 
   

 

           
 

  

   

    (9) 

 
Evaluation of the integral in Eqn. 9, unsurprisingly, yields 
an expression for kinetic energy identical to that for a 
solid body. 
 

    
 

 
     

   
  

 

 
    

  (10) 

 
Since we are assuming constant rigid body fluid rotation, 
the pressure equation (Eqn. 2, with       should hold, 

even during transients.  Rearranging, we obtain Eqn. 11, 
which can be inserted into Eqn. 10 to produce Eqn. 12, 
an expression for kinetic energy as a function of inlet 
pressure. 
 



    
 

   
         

   

 (11) 

    
 

 
    

         (12) 

 
Thus, fluid angular velocity and fluid kinetic energy can 
be inferred from the pressure at the inlet of the HFA. 
 
The final extension of the fluid rigid body assumption 
relates to regions of viscous dissipation.  It can be 
assumed that viscous effects are essentially confined to 
the boundary layers

7)9)
.  Besides lending credibility to the 

rigid fluid body model by implying that velocity gradients 
in the core are quite small, this notion helps in identifying 
parameters that are important to viscous dissipation rate.  
The picture of spin-up developed so far illustrates a 
viscous flow scenario similar to cylindrical Couette flow 
where the fluid and solid volumes are, respectively, the 
inner and outer cylinders, and the boundary layers mate 
the tangential velocities of each.  Whereas in canonical 
Couette flow there is only a cylindrical viscous flow, in 
the present situation there is also a boundary layer at 
each end wall (the Ekman layers). Both the Ekman and 
side wall boundary layers scale as  
 

   
 

 
 (13) 

 
and are roughly constant throughout the spin-up 
process

7)
.   

 

MODELING APPROACH 
 
SIMULATION STRATEGY 
 
To take into account viscous losses and fluid inertial 
behavior, simulation of HFA response to a power profile 
is more complicated than simply applying Newton’s 
second law.  Instead, the energy equation below is used, 

where    is HFA power, the known input to the 
simulation.   
 

   
 

  
    

 

  
      

   

 
(14) 

Notice that HFA power (positive when charging the HFA) 
is distributed to three terms:  One which changes the 
kinetic energy of the solid components,    ; one which 
changes the kinetic energy of the fluid components, 
    ; and one which represents viscous dissipation rate, 

  
 .  The latter, which is always positive, acts to 

decrease the amount of kinetic energy gain during 
charging and increase the necessary kinetic energy loss 
during discharging.   
 
Evaluating the derivatives in Eqn. 14 and using the fluid 
rigid body assumption leads to a new form of the energy 
equation: 

                   
   (15) 

To highlight the expected nature of the fluid response, it 
is convenient to express    as the average acceleration 

over a time step for a first order response. 
 

   
  

  
       

  

  
   (16) 

 
Equations 15 and 16 represent a system of two 

equations and four unknowns (  ,   ,   
  , and   ).  We 

therefore seek two empirical correlations, one for the 
dynamic time constant and one for the viscous 
dissipation rate, so that the simulation is solvable.  
Algorithmically, the simulation is carried out by 
sequentially solving the following equations, which are 
written in finite difference form. 
 
 

  
    

   

  
       

  

  
    

 

(17) 

  
      

    
      (18) 

 

  
    

 

    
 
           

     
      

 
   

(19) 

 
  

      
    

      
 

(20) 

  
 
          

 
(21) 

  
          

 
(22) 

Note that Eqn. 19 is a rearranged version of the energy 
equation (Eqn. 15).  Equations 21 and 22 are generic 
representations of the two desired correlations, where 
the ellipses represent some combination of known 
parameters from time step  .  The following sections 

detail the process of estimating actual equations for    
and   . 
 
POSING THE DIMENSIONAL ANALYSIS PROBLEM 
 
The first step in developing the full predictive equations 
represented in Eqns. 21 and 22 is to perform 
dimensional analysis.  It is reasonable to assume that 
viscous dissipation rate during a fluid transient will be 
affected by fluid properties, container geometry, the 
boundary layer thickness, and the difference between 
the fluid and container angular velocities.  Given these 
assumptions, the dimensional analysis problem is posed 
as 

  
 
                     (23) 

 
This yields four dimensionless groups, each of which 
has been oriented (i.e. selection of numerator versus 
denominator) to reflect its expected impact on viscous 
dissipation rate.   
 



  
 

   
    

     
    

 

 
 
 

  
 
  

  

                (24) 

 
Scaling parameters in the dependent dimensionless 
group are chosen such that viscous dissipation rate goes 
to zero as    goes to zero, a condition that is physically 
expected.   
 
Returning to the expression for boundary layer thickness 
(Eqn. 13), the first independent group in Eqn. 24 can be 
considered the inverse of a dimensionless boundary 
layer thickness (It could also be considered the square 
root of a Reynold’s number).  The second independent 
term is a container aspect ratio, defined to be consistent 
with the notion that spin-up in longer cylinders tends to 
be dominated by viscous, not advective, effects.  The 
final independent dimensionless group is deemed the 
dynamic Rossby number (a transient counterpart to the 
Rossy number,     , used in spin-up literature to 
describe an impulsive acceleration event

6)
)  Again, this 

group is oriented such that its value goes to zero when 
there is no relative velocity between the fluid and its 
container. 
 
In consideration of the discussion of spin-up literature, it 
is expected that angular velocity and acceleration of the 
container, as well as fluid viscosity and container length, 
are important parameters in predicting the dynamic time 
constant.  The dimensional analysis problem is therefore 
posed as 

                 (25) 

 
This yields the following dimensionless relationship. 
 

 

    

    
    

  
 
  

  
 
  (26) 

 
To avoid a divide-by-zero error for     , container 
acceleration must be placed in the numerator of the 
independent groups.  Then, the dynamic time constant is 
placed in the denominator of the dependent group to 
reflect the experimentally observed physics.   
 
Equations 24 and 26 indicate the dimensionless groups 
that are expected to be important in predicting the 
viscous dissipation rate and dynamic time constant, 
respectively.  We now wish to use experiments in order 
to obtain actual mathematical expressions that relate 
these groups.   
 

EXPERIMENTAL APPROACH 
 
The experimental apparatus must apply a transient 
power trace to a rotating fluid volume.  During an 
experiment, it is necessary to measure several physical 
quantities is order to calculate the various parameters in 
Eqns. 24 and 26.  Then, a curve-fitting algorithm can be 
used to derive an actual mathematical relationship 

between the dimensionless groups.  Figure 3 illustrates 
the experimental setup.   
 

 
Figure 3: Experimental setup with instrumentation 

  
A rotating cylinder filled with oil is driven by a hydraulic 
motor.  Flow rate through the motor is metered using a 
proportioning flow control valve in a feedback control 
loop.  In this way, the angular velocity of the rotating 
cylinder can be well-controlled.  A rotary torque sensor 
and shaft encoder facilitate torque and speed 
measurements, and a rotary union allows for an internal 
pressure tap at the center of an end cap.  Because the 
cylinder is not charged, Eqn. 2 indicates that gage 
pressure at the center should be negative for any 
nonzero rotational speed.  Table 1 provides relevant 
specifications for some of the experimental equipment. 
 

Table 1: Specifications for the experimental setup 
 

Oil length,           

Oil radius,             

Oil density,               

Oil kinematic viscosity,   (   )    

Maximum speed            

Maximum torque         

Sampling frequency           

 
Note that angular velocity is the prescribed physical 
quantity for any given experiment, and therefore the 
applied power is, in a sense, incidental.  For the 
purposes of characterizing viscous dissipation rate and 
dynamic time constant, this is perfectly acceptable, as 
the actual shape of the power profile is non-critical; the 
important point is that power can be extracted from the 
measured data.   
 
To confirm repeatability of measurements, the 
prescribed angular velocity traces are non-arbitrary.  
Instead, they resemble near-impulsive acceleration 
events.  To maximize the signal to noise ratio, the 
angular velocity traces are rather aggressive.  Figure 4 
shows an example angular velocity trace used for model 
development, along with its equivalent ideal (step 
change) trace. 
 
Though not fully shown Figure 4, container angular 
velocity is held constant both before and after the 
transient for a time deemed sufficient to guarantee 



steady state (at least six time constants, as defined by 
Eqn. 3).   
 

 
Figure 4: Example of an attempted step change from 

from 200 RPM to 1000 RPM, desired and achieved 
 
The extraction of the applied power profile for an 
experiment and the subsequent calculations of other 
important parameters are carried out as follows.  The 
torque on the experimental setup due to friction and 
windage has been characterized as a function of angular 
velocity.  For any experiment, this is subtracted from the 
measured torque, the result of which is multiplied by 
angular velocity to yield the transient applied power: 
 

                  (27) 

 
The measured system pressure is used to calculate fluid 
angular velocity using Eqn. 11.  Doing so relies on the 
reasonable assumption that the pressure gradient 
across the Ekman boundary layer is negligible

10)
.   

 
Due to the high sampling frequency, even a small 
amount of noise in the fluid and solid angular velocity 
profiles makes it difficult to obtain coherent traces of 
their time derivatives.  To cope with this issue, the 
angular velocity traces are smoothed with cubic splines, 
and the corresponding angular acceleration traces are 
obtained by using the analytical derivatives of the 
splines.   
 
Having calculated the angular acceleration traces, 
distribution of the applied power can be inferred.  The 
power to the solid components (the container) can be 
calculated as the rate of change of its kinetic energy, 
 

  
         (28) 

 
and the power to the fluid components is calculated as 
the difference between the applied power (Eqn. 27) and 
the power going to the solid components (Eqn. 28):  
  

  
       

  (29) 

 
The power to the fluid components can be further split 
into that which contributes to changing the kinetic energy 
of the fluid volume and that which is dissipated by 
viscosity.  Thus, viscous dissipation rate is 
 

  
    

         (30) 

 
Finally, the dynamic time constant is calculated as 
 

    
  

     
    
  

 

 
(31) 

 
Hence all quantities in Eqns. 24 and 26 have been either 
measured directly or calculated based on 
measurements, such that values for the actual 
dimensionless groups can be calculated.  It is now 
possible to begin tying together the theoretical and 
experimental approaches.  
 

MODEL DEVELOPMENT AND ASSESMENT 
 
FITTING APPROACH 
 
For all experimental datasets, the signal-to-noise ratio of 
the torque sensor is most favorable during the transient 
section, when a significant portion of the sensor capacity 
is utilized.  For this reason, only the data in the transient 
section is used in generating correlations for the fluid 
model.   
 
Because the experimental setup has a fixed geometry, 
the second dimensionless group in the viscous 
dissipation correlation is constant for all experiments.  
Therefore, the correlation space is three-dimensional for 
both the viscous dissipation rate and the dynamic time 
constant.  In choosing the form of an equation for the 
correlations, however, three-dimensional scatter plots 
offer fairly little insight.  Lacking any justification based 
on fluid mechanics, polynomial fits are chosen in 
anticipation of them being the most versatile.  Equation 
32 illustrates the form of a correlation, where    is the 

dependent dimensionless group, the   ’s are the 

independent dimensionless groups,    is a constant, and 

    is the coefficient for term which raises the     

independent group to the     power.  
 

             
 

 

 

 

 

 (32) 

 
For both correlations,    .  The viscous dissipation 
data is found to fit quite well to a third-order polynomial 
and the dynamic time constant data to a second-order 
polynomial.  The optimal coefficients for each correlation 
(  coefficients for the viscous dissipation rate and   for 
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the time constant) are found by using a genetic algorithm 
that minimizes the sum of squared errors. 
 
Eleven experiments have been run with the desired 
angular velocity trace shown in Fig. 4 (        to 

        , near-impulsive).  Each experiment yields a 
dataset from which both a viscous dissipation and a 
dynamic time constant correlation can be developed.  
The two correlations from each dataset can and should 
be assessed completely independently from one 
another.  That is, the time constant correlation from 
experiment #1 is no more “related” to the viscous 
dissipation correlation from experiment #1 than it is to 
the viscous dissipation correlation from experiment #2.  
Therefore, the experiments yield twenty-two independent 
correlations, eleven candidates for the best viscous 
dissipation correlation and eleven candidates for the 
best dynamic time constant correlation. 
 
CORRELATION ASSESSMENT CRITERIA 
 
The validity of each of the correlations is assessed by 
applying it to each of the power profiles from the other 
ten experimental datasets.  In other words, a correlation 
developed by curve-fitting data from experiment #1 can 
be tested by running a simulation where the power 
profile from experiment #2 is the input, and then 
comparing the resultant simulated data (viscous 
dissipation rate, fluid and solid angular velocity, etc.) to 
the measured data from experiment #2.  In this way, 
twenty-two different correlations (eleven each for the two 
desired parameters) are evaluated via 220 simulations.   
 
Over the course of a simulation, the accuracy of the 
dynamic time constant correlation affects the indicated 
accuracy of the viscous dissipation correlation, and vice 
versa.  For example, should the dynamic time constant 
correlation tend to under-predict the correct (measured) 
value, the viscous dissipation rate will consequently be 
under-predicted.  This is intuitive, as a lower-than-
realistic    should result in lower-than-realistic viscous 
dissipation.  For this reason, while the viscous 
dissipation correlations are being evaluated and 
compared, the dynamic time constant is intentionally 
forced to its measured value.  Then, once the best 
viscous dissipation correlation has been identified, it is 
permanently embedded in the simulation code, such that 
its effects are included during the evaluation and 
comparison of the candidate dynamic time constant 
correlations. 
 
Quantitatively, the performance of a correlation is judged 
by how well it predicts container and fluid angular 
velocities.  To produce such a judgment, the coefficient 
of determination, defined as 
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is used, where 
 

  
    

                           
 

            
  (34) 

 
To provide more qualitative insight into how a given 
correlation performs, two different coefficients of 
determination can be calculated:   
 

    
 , which includes the highly transient region 

between the initial acceleration and the time at 
which the measured fluid angular velocity has 
reached 95% of its steady state value, and 

    
 , which includes the region between the initial 

acceleration and the time at which the measured 
fluid angular velocity has reached 99% of its 
steady state value.  This generally includes a 
much larger amount of near-steady state 
behavior 
 

Any given correlation might perform quite differently in 
the highly transient section compared to the near-steady 
state section; examination of the two different 
coefficients of determination defined above provides 
insight into this difference.   
 
CORRELATION PERFORMANCE AND SELECTION 
 

Table 2 shows the values of    
 ,    

 , and         
  

    
     

    , for each of the eleven candidate viscous 

dissipation correlations.  All of these    values 
encompass data from all ten simulations for a given 
correlation, such that they represent its average 

performance.  The correlations are ranked by         
 . 

  
Table 2: Ranked performance of the viscous 

dissipation rate correlations, based on coefficient of 
determination 

Corr. # Rank         
     

     
  

7 1 0.99845 0.998825 0.998067 
9 2 0.99843 0.999039 0.997830 
3 3 0.99816 0.998836 0.997490 
4 4 0.99805 0.998773 0.997335 
1 5 0.99795 0.999171 0.996733 
6 6 0.99794 0.998850 0.997036 
8 7 0.99781 0.998125 0.997489 
2 8 0.99685 0.998603 0.995093 

11 9 0.99675 0.998599 0.994908 
5 10 0.99646 0.998460 0.994452 

10 11 0.99624 0.998629 0.993850 

Average 0.99755 0.998719 0.996389 
Standard Dev. 0.00081 0.000284 0.001511 

 
 
On average a viscous dissipation correlation predicts the 

container and fluid angular velocities with at         
  

     .  Quantitatively, there is relatively little difference in 
how well the correlations behave through 95% of steady 
state. Including data through 99% causes in increase in 
total squared error for all correlations and reveals more 



variation amongst them, increasing standard deviation 
by an order of magnitude.  In other words, there is a 
wider range of performance amongst the correlations for 
steady state, but each performs worse at steady state 
than it does during transience.  
 

Because it produces the highest value of         
 , 

viscous dissipation correlation #7 is selected for use in 
the fluid model.  As indicated in Table 2, this correlation 
performs better than all but two in transience, and better 
than any other when data through 99% of steady state is 
included.  The full expression for the selected viscous 
dissipation correlation is: 
 

  
 

      
                

    
 

 
  

 

             
    

 

 
 

 

             
    

 

 
 

 

  

 

          
  

  

           
  

  

 
 

 

 

(35) 

Notice that the first independent group contributes a full 
cubic polynomial to the correlation, while only a linear 
and a cubic term are contributed by the second 
independent group (the quadratic coefficient was forced 
to zero by the curve-fitting algorithm).  Figure 5 
illustrates the relative contribution of each independent 
group for the transient portion of an example simulation.  
For ease of plotting, the constant    has been grouped 
with the terms contributed by the second independent 
group. 

 
Figure 5: Example dataset showing the relative 

contribution of independent groups in the viscous 
dissipation correlation  

 
Figure 5 expresses what is difficult to discern from 
simply examining Eqn. 35.  Most of the transient 

behavior of the dependent group,   
     

    , is 

contributed by the second independent group,      , 

while the first independent group,      
   , acts almost 

like a constant offset.  This observation suggests that the 
fluid angular velocity relative to its container is more 
important than the estimated boundary layer thickness in 
predicting viscous dissipation rate. 
 
Having identified the best viscous dissipation rate 
correlation, it can now be embedded into the simulation 
in order to assess the performance of the eleven 
candidate dynamic time constant correlations.  During 
evaluation, three are deemed invalid due to observed 
instability during one or more simulations.  The 
remaining time constant correlations are ranked in Table 
3 by their overall combined performance with the 
selected viscous dissipation correlation. 
 

Table 3: Ranked performance of the dynamic time 
constant correlations, based on coefficient of 

determination 

Corr. # Rank         
     

     
  

8 1 0.99549 0.99726 0.99371 

6 2 0.99513 0.99749 0.99276 

2 3 0.99444 0.99614 0.99274 

11 4 0.99371 0.99697 0.99045 

5 5 0.99286 0.99692 0.98879 

9 6 0.99247 0.99670 0.98823 

1 7 0.99151 0.99585 0.98718 

10 8 0.64704 0.64414 0.64995 

Average 0.95033 0.95268 0.94798 

Standard Dev. 0.12257 0.12467 0.12044 
 
 

As expected, the average         
  for the simulations 

presented in Table 3 is lower than those in Table 2, 
where, instead of using a correlation, dynamic time 
constant was forced to the correct value.  Still, the 
quality of simulations is quite high, especially in the 
transient 95% region.    
 

Again using the criterion of highest         
 , the dynamic 

time constant correlation #8 is chosen for use in the fluid 
model.  Its full expression is: 
 

 

    

                        
    

  
 

 

  

      
  

  
 
      

  

  
 
 
 

 

 

(36) 

 
While        exhibits both linear and quadratic 
dependence on the second independent group, the 
linear term from the first independent group was 
eliminated by the curve-fitting algorithm.  The exact 
value of the small constant offset turns out not to matter, 
as it contributes a negligible amount to the value of 
      .  The offset exists only as a numerical barrier to 
calculating an infinite dynamic time constant when 
acceleration rate goes to zero.  Figure 6 shows an 
excerpt from a simulation that illustrates the relative 
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importance of the two independent groups in the 
dynamic time constant correlation. 

 
Figure 6: Example dataset showing the relative 

contribution of terms in the dynamic time constant 
correlation 

 
As was the case for the viscous dissipation correlation, 
the relative contribution from the two independent 
variables is rather lopsided.  The dependent variable 
response is dictated mostly by the behavior of the term 

     
  and corrected only slightly by the term       .   

 
It is worth noting that, as steady state is approached, 
error in the predicted dynamic time constant becomes 
simultaneously greater in value and less important in 
effect.  The former is true because the time constant is 
inversely proportional to the container acceleration and 
therefore sensitive to error as acceleration goes to zero.  
The latter is true because, as steady state is 
approached,    shrinks, and therefore any error in the 
predicted time constant is multiplied by a smaller value 
in the calculation of the fluid velocity for the subsequent 
time step.   
 
FLUID MODEL ASSESSMENT 
 
The predictive model whose development has been 
detailed in the preceding sections can be executed with 
only a few lines of code.  Simulations were run using 
MATLAB

®
 on a modest processor.  Even without any 

attempt to maximize computational efficiency, a three 
minute simulation with one millisecond temporal 
resolution can be completed in approximately one 
second.  In this regard, the requirement that the model 
be computationally inexpensive has been 
overwhelmingly achieved.   
 
Before presenting the model performance, a certain 
unanticipated nuance in the measured fluid behavior is 
described.  In experiments with significant overshoot and 
rapid recovery of container angular velocity, a negative 
time constant can be observed for a small period of time.  
An example is illustrated in Fig. 7, where the fluid 
angular velocity can be seen to follow a qualitatively 
similar profile as the container angular velocity, spiking 

and beginning to decrease, even though    never 
ceases to be positive.   

 
Figure 7: Example of a region with an observed 

negative time constant 
 
To the authors’ knowledge, there is no physical 
explanation for the region of observed negative time 
constant shown in Fig. 7; the fluid angular velocity 
should increase as long as it remains below the 
container angular velocity.  It is therefore postulated that, 
during strong acceleration, flow phenomena in the 
Ekman boundary layer generate a pressure gradient that 
causes the pressure sensor to read somewhat lower 
(more vacuum) than the true value in the fluid core.  This 
is translated via Eqn. 11 to a somewhat over-predicted 
fluid angular velocity.  A sudden deceleration of the 
container is accompanied by a reversal in the 
aforementioned flow phenomena, the net result of which 
is to generate a fluid angular velocity trace which 
exhibits some non-physical behavior. 
 
It must be noted that characterizing a dynamic time 
constant is extremely useful, regardless of how well the 
measured pressure indicates fluid angular velocity.  The 
ability to predict the transient response of pressure itself 
is essential in developing a control strategy that 
effectively regulates hydraulic system pressure.  The 
detrimental effect of the behavior shown in Fig. 7, then, 
is to overestimate (in positive acceleration) the rate of 
change of fluid kinetic energy, thereby introducing some 
error into the energy equation (Eqn. 15).  For the 
purposes of assessing model performance, the 
remainder of the discussion relies on the assumption 
that the calculated fluid angular velocity is reasonably 
accurate.   
 
In addition the requirement of computational simplicity, 
the fluid model must realistically predict HFA behavior.  
As a general illustration of the performance of the model, 
Figures 8, 9 and 10 show angular velocities, dynamic 
time constant, and viscous dissipation rate, respectively, 
for the transient portion of an example simulation.  The 
plots show simulated quantities and their corresponding 
measured quantities.  This example comes from a 
dataset that, importantly, is not the same one that 
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generated either of the correlations chosen for the fluid 

model.  For this example,    
        . 

 

 
Figure 8: Fluid and container angular velocities, 

measured versus simulated, near-impulsive 
acceleration from 200-1000 RPM 

 
Figure 9: Dynamic time constant, measured versus 
simulated, near-impulsive acceleration from 200-

1000 RPM 

 
Figure 10: Viscous dissipation rate, measured 

versus simulated, near-impulsive acceleration from 
200-1000 RPM 

 

Figure 8 shows that, qualitatively, the fluid model 
predicts container and fluid angular velocities quite well 
for the transient section of an aggressive acceleration 
event.  For the first two seconds after the onset of 
acceleration, time constant and viscous dissipation rate 
are very well-predicted, leading to near perfect 
agreement between measured and simulated angular 
velocities.  The first spike in container angular velocity is 
initially handled well, but near 62 seconds, Fig. 9 shows 
that the time constant begins to be over-predicted.  This 
has the effect of predicting a    that is slightly too large, 
which in turns leads to an over-prediction of viscous 
dissipation, which can be seen in Fig. 10.  When steady 
state is nearly reached, the time constant begins to be 
under-predicted, such that simulated fluid and solid 
angular velocities converge somewhat too early.   
 
Though there is noticeable error in the predicted viscous 
dissipation rate, its integral is very near that of the 
measured viscous dissipation rate.  Therefore, the net 
dissipated energy is predicted quite accurately, and the 
simulated angular velocities converge to the correct 
value.  Negative values of measured dissipation rate are 
non-physical and are attributed to noise in the data.  
Figure 10 shows that the formulation of Eqn. 35 properly 
avoids the prediction of any negative dissipation rate.   
 
Recall that, to maximize the utilized range of the torque 
sensor, only experimental runs with the relatively 
aggressive case of near-impulsive              
have been used in the development of the fluid model.  
The model performance is diminished to varying extents 
when applied to other transient cases.  Figure 11 shows 
measured and predicted angular velocity traces for the 
smaller near-impulsive acceleration event of     
       .   
 

 
Figure 11: Fluid and container angular velocities, 

measured versus simulated, near-impulsive 
acceleration from 200-600 RPM  

  
 

For this transient section,    
        , slightly lower the 

             case.  The same qualitative trends are 
observed for both cases.  Time constant and viscous 
dissipation rate are initially predicted quite well.  The 

58 60 62 64 66 68 70
0

20

40

60

80

100

120

time (s)

a
n
g
u
la

r 
v
e
lo

c
it
y
 (

ra
d
/s

)

 

 

solid, pred.

solid, meas.

fluid, pred.

fluid, meas.

58 60 62 64 66 68 70

-5

0

5

10

time (s)

 d
 (

s
)

 

 
measured

simulated

58 60 62 64 66 68 70

0

2

4

6

8

10

12

time (s)

V
is

c
o
u
s
 D

is
s
ip

a
ti
o
n
 R

a
te

 (
W

)

 

 
measured

simulated

90 92 94 96 98 100
0

20

40

60

80

time (s)

a
n
g
u
la

r 
v
e
lo

c
it
y
 (

ra
d
/s

)

 

 

solid, pred.

solid, meas.

fluid, pred.

fluid, meas.



spike in container angular velocity has a small 
detrimental effect on the latter, causing the simulated 
angular velocities to reach steady state too soon.  A 
slight over-prediction in net dissipated energy causes the 
final simulated angular velocity to be a few radians per 
second lower than the measured value.  In full, the 
model proves to be fairly robust for the             
near-impulsive case. 
 
The model performance suffers much more when the 
initial angular velocity is different than that which was 
used to produce the correlations.  Figure 12 shows the 
case of near-impulsive acceleration from     
        . 

 
Figure 12: Fluid and container angular velocities, 

measured versus simulated, near-impulsive 
acceleration from 600-1000 RPM 

 

In this case,    
        , which is significantly lower 

than either of the previously presented cases.  The 
model substantially over-predicts the dynamic time 
constant from the beginning of the transient.  While 
predicted container angular velocity is initially quite 
accurate, the artificially large    generates an 
erroneously high simulated rate of viscous diffusion.  
This drags the predicted steady state angular velocity 
down to a value significantly below the correct value.   
 
As a final example of the versatility of the fluid model, it 
is useful to examine the case of a non-impulsive 
acceleration.  Figure 13 shows the predicted and 
measured angular velocities for the case of a mild 
acceleration from             over the course of 

about      seconds.  Compared to the near-impulsive 

             example illustrated in Figures 8 
through 10, the average acceleration for this milder case 
is lower by a factor of three, and the maximum observed 
rate of acceleration is lower by a factor of ten. 
 
Qualitatively, the model performance for this transient 
section falls somewhere between the two shorter, near-
impulsive cases shown in Figures 11 and 12.  Here, 
however, the viscous dissipation rate is the more error-
prone correlation.  The measured viscous dissipation 
rate is so close to zero that the model tends to over-

predict it.  The result of this it under-predict both angular 
velocities, even though the time constant is reasonably 
accurate.   

 
Figure 13: Fluid and container angular velocities, 
measured versus simulated, gradual acceleration 

from 100-800 RPM 
 
 

CONCLUSION 
 
This paper detailed the theory and experiments used to 
develop a model for the transient behavior of a rotating 
fluid volume.  The model relies on the assumption that, 
under applied power, the fluid volume accelerates 
roughly as a rigid body and lags behind its container in a 
manner that can be modeled as a first-order time 
response.  The simplicity of the model allows it to 
simulate the transient HFA performance orders of 
magnitude more quickly than would be possible if CFD 
were used.  This makes it quite applicable to a highly-
resolved drive cycle simulation nested within a 
comprehensive design optimization. 
 
The fluid model relies on correlating dimensionless 
groups of relevant parameters for viscous dissipation 
rate and dynamic time constant.  The structure of these 
two correlations was chosen to be, respectively, a third- 
and second-order polynomial, excluding binomial terms.  
A genetic algorithm was used to find the set of 

polynomial coefficients that produced the smallest    
value when fit to experimental data.  
 
By comparing simulations to measured data, the fluid 
model was shown to perform well for transient sections 
of intense acceleration and large   .  To varying 
degrees, the performance of the model was observed to 
decrease when applied to other types of transients.  For 
intense accelerations in general, the model predicts 
viscous dissipation rate quite well.  However, when the 
initial angular velocity is very far from that used to 
develop the correlation (       ), prediction of the 
dynamic time constant is notably hindered.  Conversely, 
for cases where acceleration is milder, time constant is 
accurately predicted, while viscous dissipation rate tends 
to be over-predicted.  To improve the robustness of the 
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model, experimental data representing a wider variety of 
transients will be used in future work.   
 
During experimental data collection, pressure was 
measured at     at the face of one of the container 
end caps.  There is some uncertainty as to how well this 
pressure measurement indicates the true pressure in the 
fluid core.  Future work will deal with this uncertainty by 
either modifying the experimental apparatus to measure 
pressure away from the end cap, or by attempting to 
characterize the pressure gradient across the boundary 
layer that might arise from Ekman flow phenomena. 
 
Finally, it is important to note that the model developed 
and assessed in this paper is specific to the 
experimental setup used to create it.  Container aspect 
ratio, which was included as an independent group in the 
dimensional analysis, was not varied in the experiments, 
and was therefore not correlated.  To make the model 
fully applicable to a design optimization, all relevant 
dimensionless groups must be correlated. Future work 
will include the ability to vary the geometry of the 
container and/or the fluid properties used in the 
experiments.  Then, the experimental methods and 
computational tools described in this paper can be used 
to explore the full dimensionless space that 
characterizes the transient response of a rotating fluid to 
an arbitrary power profile. 
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