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Abstract

Balinski and Tucker introduced in 1969 a special form of optimal tableaus for
LP, which can be used to construct primal and dual optimal solutions such that the
complementary slackness relation holds strictly. In this paper, first we note that using
a polynomial time algorithm for LP Balinski and Tucker’s tableaus are obtainable in
polynomial time. Furthermore, we show that, given a pair of primal and dual optimal
solutions satisfying the complementary slackness relation strictly, it is possible to find
a Balinski and Tucker’s optimal tableau in strongly polynomial time. This establishes
the equivalence between Balinski and Tucker’s format of optimal tableaus and a pair
of primal and dual solutions to satisfy the complementary slackness relation strictly.
The new algorithm is related to Megiddo’s strongly polynomial algorithm that finds
an optimal tableau based on a pair of primal and dual optimal solutions.

Key words: Linear programming, the simplex tableau, primal and dual solu-
tions, complementary slackness, strongly polynomial-time.
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1 Introduction

Consider the following linear program

(P ) min cT x
s.t. Ax = b

x ≥ 0

where A is an m × n matrix, b ∈ Rm and c ∈ Rn, and its dual problem

(D) max bT y
s.t. yT A ≤ cT .

Assume that both (P) and (D) have optimal solutions, and rank{A} = m.

It is well known that for optimal solutions of (P) and (D), the complementary
slackness relation holds (see Chvátal [2]). Moreover, the following stronger statement
can be proved.

Lemma 1 There exist optimal solutions to (P) and to (D) such that

x∗
i (ci − y∗T Ai) = 0 and x∗

i + (ci − y∗T Ai) > 0

for every i = 1, 2, · · · , n.

Proof.
See Goldman and Tucker [4], Dantzig [3] and Schrijver [9].

�

To distinguish from the normal complementary slackness relation, which does not
exclude the possibility that both x∗

i and (ci − y∗T Ai) are zero, we call the relation
stated in Lemma 1 the strictly complementary slackness relation. Clearly, the concept
of the strictly complementary slackness relation is interesting only for degenerate
problems. Although the existence of a strictly complementary primal-dual pair is
easily derived using Farkas’ Lemma (cf. [9]), it is important to know how such a pair of
solutions can be constructed. In 1969, Balinski and Tucker [1] showed a constructive
way to get such strictly complementary pair in finite time. In their approach, a
special format of the optimal tableau for linear programming was investigated. We
will refer to this type of optimal tableau as the Balinski-Tucker tableau in this paper.

The recent development of the interior point methods for linear programming has
opened new areas for research. In [6] an attempt was made to base the duality theory
and the sensitivity analysis entirely on the interior point methodology. Typically,
solutions produced by primal-dual interior point algorithms converge to the analytical
center of the relative interior of the optimal face. Compared to the classical simplex
method, where only basic feasible solutions are searched, this non-vertex property of
the interior point methods was regarded as a disadvantage at early stages. To get a
true vertex optimal solution from an approximative solution, a purification procedure
can be used (cf. [7] and [12]). However, there are differences between a vertex optimal
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solution and an optimal basic solution, for there can be many bases corresponding to
the same vertex. In [8], Megiddo showed that knowing only a primal optimal solution
does not help in general to find an optimal basis which should be both primal and dual
feasible. However, in the same paper he proved that if a primal optimal solution and
a dual optimal solution are available simultaneously, then finding an optimal basis
can be done in strongly polynomial time.

In this paper, we will show that knowing non-vertex primal and dual optimal
solutions (in the degenerate case) actually we get more information. More pre-
cisely, we present strongly polynomial-time algorithms which can be used to con-
struct “lexicographically feasible” extremal directions around the purified vertices.
As a consequence, if we have both primal- and dual optimal solutions belonging to the
relative interior of the respective optimal face, then a Balinski-Tucker tableau can
be constructed in strongly polynomial time. In some sense, this result establishes
that a Balinski-Tucker tableau and a pair of primal- and dual- optimal solutions
in the relative interior of the optimal faces are equivalent. We remark also that a
Balinski-Tucker tableau can be obtained in polynomial time in the weak sense, using
a polynomial algorithm for LP. Our analysis is closely related to Megiddo’s algorithm
that finds an optimal basis using a pair of primal-dual solutions.

We organize this paper as follows. In the next section we discuss the prop-
erties of solutions satisfying the strictly complementary slackness relation. In the
same section, the Balinski-Tucker tableau will be introduced, and its basic properties
discussed. In Section 3, Megiddo’s algorithm for finding an optimal basis will be
included. New algorithms for finding Balinski-Tucker’s tableau and the correctness
proofs will be presented in Section 4. Finally, we conclude the paper in Section 5.

Before proceeding we mention the notations we use in this paper. We denote
matrices by capital letters, and vectors by lower case letters with subscript denoting
the coordinate. Index sets are denoted either by capital letters or by Greek letters.
For a matrix A = (a1, · · · , an) and an index set I, AI denotes the submatrix of A
whose columns belong to I, i.e. AI = {aj : j ∈ I}. The same rule applies to vectors.
To ease the notation we do not distinguish aj and Aj . A basis for the problem
(P), denoted by B, is a maximal subset of {1, 2, · · · , n} such that the corresponding
columns in AB are independent. The complementary set N := {1, 2, · · · , n} \ B is
called nonbasis. Finally, a tableau T (B) associated with a basis B is a matrix given
as follows:

T (B) =

(
cT
N − cT

BA−1
B AN −z0

A−1
B AN A−1

B b

)

where z0 = cT
BA−1

B b. If A−1
B b ≥ 0 we call the tableau primal feasible and we call

it dual feasible if cT − cT
BA−1

B A ≥ 0T . We call in this paper the matrix A−1
B A a

sub-tableau.
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2 Strictly Complementary Slackness and Balin-

ski and Tucker’s Tableau

Solutions for the primal and for the dual problem satisfying the strictly comple-
mentary slackness relation can be characterized by their topological position in the
optimal faces. Let

FP = optimal solution set of (P)

FD = optimal solution set of (D)

and
oFP = relative interior of FP

oFD= relative interior of FD.

The definition of relative interiors can be found, e.g., in [9].
We have the following result.

Lemma 2 Solutions x∗ and y∗ satisfy Lemma 1 if and only if x∗ ∈ oFP and y∗ ∈ oFD.

Proof.
See Corollary 2.1 of [5].

�

Remark 1 By the definition, a single point also belongs to its 0-dimensional relative
interior.

To see how solutions satisfying Lemma 1 can be obtained we introduce a special
tableau form used by Balinski and Tucker in [1]. First we note the following result
proved in [1].

Lemma 3 Starting from an arbitrary tableau (matrix) it is always possible to get
one of the following two tableau forms using pivot operations:

(i)

· · · · · ·
· · · · · ·
⊕ ⊕ · · · ⊕
· · · · · ·
· · · · · ·

(ii)

· · � · ·
· · � · ·
...

...
...

...
...

· · � · ·
where ⊕ stands for either a positive number or zero, and � for a negative number or
zero.
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Proof.
See Corollary 1 of [1]. For an alternative proof we can also use the criss-cross

method as follows (cf. [10] or [11]). Fix one row and one column. If there is no nega-
tive elements in the row or no positive elements in the column, then stop. Otherwise,
among the negative elements in the row and the positive elements in the column,
select the one with the minimal index. Suppose it is a row element (for the other
case follow the similar procedure). Then for the column corresponding to the chosen
element find positive elements. If there is none, stop. Otherwise select the one with
the smallest index. Pivot on this position. Since this criss-cross method guarantees
no repetition of the bases, after a finite amount of pivoting steps, we will have to
terminate with a tableau belonging to one of the two above mentioned formats.

�

Using this lemma we are now able to present the following result of Balinski and
Tucker [1].

Theorem 1 There exists an optimal tableau in the following format

+ + −z0

+ +

+ + +

−
−

−
−

−
−
−

+
+
+

where + stands for a positive number and − for a negative number, and all the
unspecified numbers above the staircase are zeros.

Proof.
Applying Lemma 3 recursively on the north-east corner of the matrix which is

not yet covered by positive rows or negative columns or the positive elements of the
right-hand-side vector, the theorem easily follows.

�
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Remark 2 Balinski-Tucker type tableaus are not unique in general.

Remark 3 A Balinski-Tucker tableau can also be called a lexicographically optimal
tableau. Information about the dimension of the optimal faces is easily seen from
a Balinski-Tucker tableau. The number of columns corresponding to the negative
part of the staircase (columns between the two vertical double-lines in the displayed
tableau), except for the basic ones, is equal to the dimension of the primal optimal
face. The number of the rows corresponding to the positive part of the staircase
equals the dimension of the dual optimal face.

Interestingly, using a polynomial algorithm for LP we have the following result.

Lemma 4 It is possible to construct a Balinski-Tucker tableau in polynomial time.

Proof.
We need only to show that the tableau forms displayed in Lemma 3 can indeed

be obtained in polynomial time. To see this, for a given sub-tableau A−1
B A we fix

one arbitrary column, say A−1
B An. Consider now the following linear program:

min 0T x

s.t. A−1
B Āx = −A−1

B An

x ≥ 0

where Ā is AB∪N\{n}. The dual problem is:

max −(A−1
B An)T y

s.t. yT A−1
B Ā ≤ 0T .

Clearly the dual has a feasible solution y = 0. Now apply a polynomial time
algorithm to solve the primal problem. There are two possible cases: 1) the primal
problem has an optimal basic solution reported by the algorithm; and 2) the pri-
mal problem has no feasible solution, and a dual unbounded extremal direction is
reported. In both cases, the required tableau format given in Lemma 3 would follow.

�

For a pair of strictly complementary primal and dual solutions we have the fol-
lowing important property.

Lemma 5 For any x∗ ∈ oFP and y∗ ∈ oFD, the index sets I := {i : x∗
i > 0} and

J := {j : cj−y∗T Aj > 0} form a unique partition of {1, 2, · · · , n} which is independent
of x∗ and y∗.

Proof.
See, e.g., [6].

�
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It is easily seen that if a Balinski-Tucker tableau is available, then a pair of optimal
solutions for (P) and (D) satisfying the strictly complementary slackness relation can
be obtained as shown in the following theorem. Remark that due to Lemma 2 this
pair of optimal solutions belong to the relative interior of the corresponding optimal
faces.

Theorem 2 If a Balinski-Tucker tableau is given, then a pair of strictly complemen-
tary optimal solutions for (P) and (D) can be found in strongly polynomial time.

Proof.
See Section 4 of Balinski and Tucker [1].

�

The main purpose of this paper is to show that the reverse of the above theorem is
also true. Namely, we are going to show that if such a pair of strictly complementary
solutions for (P) and (D) are known, then we can construct a Balinski-Tucker tableau
in strongly polynomial time. Before doing this, we first introduce in the next section
Megiddo’s algorithm which is useful for our analysis.

3 Megiddo’s Algorithm

Megiddo [8] showed the following. To find an optimal tableau (basis), given an
optimal solution x∗ of (P), is in general as difficult as solving (P) from scratch.
However, if a pair of optimal solutions x∗ (of (P)) and y∗ (of (D)) are available,
it is possible to construct an optimal tableau (basis) in strongly polynomial time.
We shall now present Megiddo’s strongly polynomial-time algorithm for finding an
optimal basis.

Megiddo’s Algorithm

• Input: x̄ ∈ FP and ȳ ∈ FD.

• Output: An optimal basis B and the tableau T (B).

Step 1 Let X := {i : x̄i > 0} and Y := {j : cj − ȳT Aj = 0} (hence X ⊆ Y due to
the complementarity).

Step 2 If columns of AX are linearly independent, go to Step 4.

Step 3 Choose j ∈ X such that Aj is linearly dependent on AX\j . Find w such that
Aj = AX\jw and let

dk :=

⎧⎪⎨
⎪⎩

1, for k = j
−wk, for k ∈ X \ j
0, otherwise.

Let
t := min{ x̄i

di
: for i such that di > 0}

and x̄ := x̄ − td and X := {i : x̄i > 0}. Go to Step 2.
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Step 4 If there is j ∈ Y such that Aj is linearly independent of AX , then X := X∪j
and repeat Step 4.

Step 5 If rank{AX} = m, let B := X; construct the corresponding tableau T (B)
and stop.

Step 6 Let j 	∈ X and Aj is linearly independent of AX . Solve

zT AY = 0T

zT Aj = 1.

Let

t := min{ck − ȳT Ak

zT Ak
: for k such that zT Ak > 0}.

Let ȳ := ȳ + tz and Y := {j : cj − ȳT Aj = 0}. Go to Step 4.

Theorem 3 Megiddo’s algorithm is correct and runs in strongly polynomial time.

Proof.
Clearly, during the procedure, x̄ and ȳ stay feasible and satisfy the complementary

slackness relation and therefore remain optimal. Upon termination, the set X is a
basis with x̄ the corresponding optimal basic solution and ȳ the corresponding dual
optimal basic solution. The strong polynomiality follows immediately after noticing
that each time at Step 3, | X | strictly decreases, and at Step 6, | Y | strictly increases.

�

4 The New Algorithms

In this section we shall present three new algorithms. The last algorithm is to con-
struct a Balinski-Tucker tableau, and it is actually a summary of the first two al-
gorithms and Megiddo’s algorithm. We start our discussion by introducing some
notations.

For a vector v in Rn, we denote its positive support by σ(v) := {i : vi > 0}, and
its negative support by χ(v) := {i : vi < 0}, and the support by π(v) := σ(v)∪χ(v).

For a feasible basis B, let the corresponding basic solution of (P) be x̄. Clearly,
x̄B = A−1

B b and x̄N = 0. We call a direction r ∈ Rn a primal extremal direction
w.r.t. B (a circuit) if and only if Ar = 0 and there is j ∈ N with rj > 0 and
π(r) ⊆ B ∪ j. Similarly, if we let the corresponding dual basic solution be ȳ, then
ȳT AB = cT

B. We call a direction d ∈ Rm a dual extremal direction w.r.t. B if and only
if there is i ∈ B such that dT Ai < 0 and π(dT A) ⊆ N ∪ i. It is well known that the
primal extremal directions are extended nonbasic column vectors in the sub-tableau
and the dual extremal directions are the row vectors in the sub-tableau. In case of
degeneracy, however, it may happy that none of extremal directions are feasible. Note
that extremal directions are related to the basis. In fact, for degenerate problems,
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finding a tableau with feasible extremal direction is as difficult as solving a linear
program. To link extremal directions with Balinski and Tucker’s tableau, we note
the following lemma.

Lemma 6 Suppose we have an optimal tableau T (B) with primal optimal basic so-
lution x̄ and dual optimal basic solution ȳ. Moreover, suppose that there exist some
primal extremal directions r(1), r(2), · · · , r(ν) w.r.t. B, and some dual extremal direc-
tions d(1), d(2), · · · , d(τ) w.r.t. B, in such a way that:

1). x̄+
∑t

j=1 δjr
(j) ∈ FP for t = 1, 2, · · · , τ −1, where δj are some positive numbers;

2). ȳ+
∑s

j=1 εjd
(j) ∈ FD for s = 1, 2, · · · , ν−1, where εj are some positive numbers;

3). x̄ +
∑τ

j=1 δjr
(j) ∈ oFP ;

4). ȳ +
∑ν

j=1 εjd
(j) ∈ oFD.

Then the tableau is a Balinski-Tucker tableau.

Proof.
From 1) and 2) we know that

χ(r(t)) ⊆ σ(x̄ +
t−1∑
j=1

δjr
(j))

for t = 1, 2, · · · , τ and,

σ(d(s)T A) ⊆ σ(cT − (ȳ +
s−1∑
j=1

δjd
(j))T A)

for s = 1, 2, · · · , ν.
By definition, it follows from 3) and 4) that

σ(x̄ +
τ∑

j=1

δjr
(j)) and σ(cT − (ȳ +

ν∑
j=1

δjd
(j))T A)

form the optimal partition for strictly complementary pairs. Now put columns in
the sub-tableau corresponding to r(1), r(2), · · · , r(τ) in the most right part of the sub-
tableau with the right-to-left order, and arrange rows in T (B) corresponding to
d(1), d(2), · · · , d(ν) in the upper part of the sub-tableau from top to bottom.

With this construction it is clear that T (B) is a Balinski-Tucker tableau.
�

The goal of the next two algorithms is in fact to find a basis set and extremal
directions which can fulfill conditions of Lemma 6. Observe that if we have a vertex
optimal solution and another optimal solution, then by connecting them we get a
feasible direction for the vertex solution. Purify this direction to the extremal ones we
obtain at least one feasible extremal direction. Applying this procedure repeatedly
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for a sequence of shrinking subproblems we finally get a set of needed extremal
directions. Since we are interested in extremal directions induced in one tableau, the
basic index must be recorded in the procedure in a consistent way. Another important
observation is that finding primal extremal directions and finding dual ones can be
done separately, due to the complementarity. The algorithms below are based on
these observations. The primal part and the dual part are separately treated in two
algorithms to ease the presentation. In the primal algorithm we call an index set I
a circuit if the columns in AI form a minimal dependent set, namely by deleting a
certain column amongst them, the remaining ones will become independent.

The Primal Algorithm (PA)

• Input: x̄ ∈ oFP .

• Output: A classification of indices in σ(x̄) to either B or N ; and a set of primal
extremal directions r(l).

Step 0 Use Megiddo’s algorithm to obtain a primal vertex optimal solution x∗.
Denote I := σ(x̄) and d := x̄ − x∗.
Let B := {i : i ∈ σ(x∗)}, N := ∅ and l := 1.

Step 1 If I = B ∪ N , stop.

Step 2 Let K := I \ (B ∪ N) and d′ := d.

Step 3 If B ∪ K is not a circuit, go to Step 4.
Let

λ := min{di

d′i
: i ∈ K}

and

d := d − λd′

K ′ := {i : di = 0 and i ∈ K}.

Take any il ∈ K ′ and let

r(l) := d′,
N := N ∪ il,

B := B ∪ K \ il,

l := l + 1.

Go to Step 1.

Step 4 Find f ∈ Rn such that

• Af = 0;
• π(f) ⊆ B ∪ K;
• fK 	≤ 0 and fK independent of d′K .
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Let

λ := min{d′i
fi

: fi > 0 and i ∈ K}

and

d′ := d′ − λf

K := K \ {i : d′i = 0}.

Go back to Step 3.

Remark 4 We may call a cycle “Step 3 – Step 4 – Step 3” an inner-loop and a
cycle from Step 1 to the next Step 1 an outer-loop. It is clear that the nonbasis set
N is monotonically expanding after performing one outer-loop, and the working set
K is decreasing during each inner-loop. In any loop, for i 	∈ σ(x∗) we have di ≥ 0,
σ(d′) ⊆ σ(d) and π(d′) ⊆ B ∪K which means that at the beginning of an outer-loop,
dN = d′N = 0. During an inner-loop, d′K > 0. At the end of an outer-loop we have
dK′ = 0. Because at Step 4 fK is chosen to be independent of d′K , and so when
finishing Step 4 we always have K 	= ∅. Moreover, because at the end of Step 4
we have AB∪Kd′B∪K = 0 and d′K > 0, so we conclude that columns in the matrix
AB∪K are not independent. At the end of an outer-loop (Step 3) we have d′il > 0 and
this shows that by removing Ail the remaining columns in AB∪K are independent.
Finally, we remark that when the algorithm is terminated we have π(d) ⊆ σ(x∗).

Now we prove the following result.

Theorem 4 For the algorithm (PA) the following hold:

1). The algorithm runs in strongly polynomial time;

2). All the produced directions r(l) (1 ≤ l ≤ τ) are primal extremal directions;

3). There exist positive numbers δl (1 ≤ l ≤ τ) with 1 � δ1 � δ2 � · · · � δτ > 0
such that

x∗ +
t∑

l=1

δlr
(l) ∈ FP

for 1 ≤ t ≤ τ − 1 and

x∗ +
τ∑

l=1

δlr
(l) ∈ oFP .

Proof.
The strong polynomiality of the algorithm is easy to see, because after each inner-

loop, the set K strictly expands, and after each outer-loop, the set B ∪ N strictly
expands. To prove that the directions r(l) (1 ≤ l ≤ τ) are extremal directions defined
on the same tableau, we will have to check that for every r(l), π(r(l)) ⊆ B∪ il. Notice
that we have dN = 0 after performing one outer-loop, where N is the set of nonbasic
variables so far, and so the elements in N will not contribute as nonzero elements in
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the later constructed extremal directions. This proves the above statement. The last
part of the theorem follows from the relation

χ(r(t)) ⊆ σ(x∗) ∪
t−1⋃
l=1

σ(r(l))

which can be proved by induction on t for t = 1, 2, · · · , τ . Remark that at the end of
the t-th outer-loop we have r

(t)
K > 0 and π(r(t)) ⊆ B ∪ K.

Moreover,

σ(x∗) ∪
τ⋃

l=1

σ(r(l)) = I,

and so the theorem is proved.
�

The second algorithm treats the dual part. It works in a similar way as its primal
counterpart.

The Dual Algorithm (DA)

• Input: ȳ ∈ oFD.

• Output: A classification of indices in σ(cT − ȳT A) to either B or N ; and a set
of dual extremal directions d(l).

Step 0 Use Megiddo’s algorithm to obtain a dual vertex optimal solution y∗.
Denote J := σ(cT − ȳT A), I := {1, 2, · · · , n} \ J and z := y∗ − ȳ.
Let N := {j : j ∈ σ(cT − y∗T A)}, B := ∅ and l := 1.

Step 1 If rank{AI∪B} = m, let N := J \ B, stop.

Step 2 Let K := ∅ and z′ := z.

Step 3 If rank{AI∪B∪K} < m − 1, go to Step 4.
Let

λ := min{ zT Aj

z′T Aj
: j ∈ J \ (B ∪ N ∪ K)}

and

z := z − λz′

K ′ := {i : zT Aj = 0 and i ∈ J \ (B ∪ N ∪ K)}.

Take any jl ∈ K ′ and let

d(l) := −z′,
B := B ∪ jl,

N := N ∪ K \ jl,

l := l + 1.

Go to Step 1.
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Step 4 Find u ∈ Rm such that

• uT AI∪B∪K = 0;
• uT AJ\N 	≤ 0T and uT AJ\N independent of z′T AJ\N .

Let

λ := min{z′T Aj

uT Aj
: uT Aj > 0 for j ∈ J \ N}

and

z′ := z′ − λu

K := K \ {j : z′T Aj = 0}.

Go back to Step 3.

Remark 5 Similar to Algorithms (PA), now the basis set B is strictly expanding
in an outer-loop and K is strictly expanding in an inner-loop. Because u 	= 0 and
uT AI∪B∪K = 0 at the end of one inner-loop, so that rank{AI∪B∪K} < m after one
inner-loop. Other properties of Algorithm (PA) also hold here in a parallel way (see
Remark 4).

Now we have the similar result as for Algorithm (PA).

Theorem 5 For the algorithm (DA) the following hold:

1). The algorithm runs in strongly polynomial time;

2). All the produced directions d(l) (1 ≤ l ≤ ν) are dual extremal directions;

3). There exist positive numbers εl (1 ≤ l ≤ ν) with 1 � ε1 � ε2 � · · · � εν > 0
such that

y∗ +
s∑

l=1

εld
(l) ∈ FD

for 1 ≤ s ≤ ν − 1 and

y∗ +
ν∑

l=1

εld
(l) ∈ oFD .

Proof.
Similar to the proof of Theorem 4, and is omitted here.

�

Remark 6 We remark here that the new algorithms can be applied to find “lexico-
graphically feasible” extremal rays starting from any optimal pair of solutions (i.e.
not necessary strictly complememtary pairs). The advantage of having a pair of
primal- and dual- optimal points in the relative interiors is that a complete set of
extremal directions will be found.
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Finally, we present the combined algorithm to get a Balinski-Tucker tableau.

The Primal-Dual Algorithm (P&D)

• Input: x̄ ∈ oFP and ȳ ∈ oFD.

• Output: A Balinski-Tucker Tableau.

Step 1 Apply Megiddo’s algorithm to get the primal basic optimal solution x∗ and
the dual basic optimal solution y∗.

Step 2 Apply the primal algorithm (PA) to get a partition of variables in σ(x̄) to
either B or N , and to get a set of extremal directions r(l) (1 ≤ l ≤ τ).

Step 3 Apply the dual algorithm (DA) to get a partition of variables in σ(cT − ȳT A)
to either B or N , and to get a set of extremal directions d(l) (1 ≤ l ≤ ν).

Step 4 Construct the tableau based on the basis B obtained at Step 2 and 3, and
using the procedure described in the proof of Lemma 6 to arrange and get a
Balinski-Tucker type tableau.

Summarizing Theorem 3, Theorem 4, Theorem 5 and Lemma 6, we have the
following main theorem of this paper.

Theorem 6 The algorithm (P&D) yields a Balinski-Tucker tableau in strongly poly-
nomial time.

Proof.
The theorem follows immediately from Theorem 3, Theorem 4, Theorem 5 and

Lemma 6. Notice also that B is indeed a basis, because columns in AB are inde-
pendent according to the primal algorithm, and rank{AB} = m according to the
dual algorithm. The extremal directions so derived satisfy the conditions required
by Lemma 6.

�

5 Conclusions

In this paper we showed that if we have a pair of optimal primal and dual solutions
satisfying the complementary slackness relation strictly, then we can construct a
certain kind of optimal tableau which contains at least the information about the
dimension of the optimal faces and the lexicographically feasible extremal directions.
The construction is done in strongly polynomial time. Since linear programming is
not yet known to be solvable in strongly polynomial time, this shows that optimal
solutions can be further classified according to the information carried.

The algorithms can also be used for other purposes, e.g., to find the dimension of
the optimal faces.
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