
RECURSIVEAPPROXIMATION OFTHE HIGH

DIMENSIONAL max FUNCTION

Ş. İ. Birbil †, S.-C. Fang‡, J. B. G. Frenk\ and S. Zhang§∗

†Faculty of Engineering and Natural Sciences

Sabancı University, Orhanli-Tuzla, 34956, Istanbul, Turkey.

‡Industrial Engineering and Operations Research

North Carolina State University, Raleigh, NC 26695-7906, USA.

\Econometrics Institute, Erasmus University Rotterdam

Postbus 1738, 3000 DR Rotterdam, The Netherlands.

§Systems Engineering and Engineering Management

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.

ABSTRACT. This paper proposes a smoothing method for the generaln-dimensionalmax function,

based on a recursive extension of smoothing functions for the 2-dimensionalmax function. A theo-

retical framework is introduced, and some applications are discussed. Finally, a numerical comparison

with a well-known smoothing method is presented.

Keywords.smoothing methods,n-dimensionalmax function, recursive approximation

1 Introduction

In various areas of mathematical programming themax function plays an important role. This function

appears either naturally during a modelling process or is called for in reformulating an existing model.

A large class of problems can be formulated as amin−max optimization problem. This class includes

generalized fractional programs, Lagrangean duals, two-person zero sum games, robust optimization,

variational inequalities and complementarity problems. For these problems themax function is taken

either over a finite set or, in most cases, over an infinite set. To solve such problems a family of algo-

rithms are proposed in [3], where the original problem is approximated by a sequence ofmin−max
problems with themax function ranging over a finite set. Therefore, in this general procedure one needs

to solve iteratively amin−max problem with themax function ranging over a finite set. If the original

set is a polyhedron, it can be shown that one has to solve only a finite number of these problems. As

mentioned above, themax function can also be applied to reformulate some well-known models. It can

be shown that the set of stationary points of a mathematical program with equilibrium constraints can

be equivalently formulated by a system of nonlinear equations, which includes severalmax functions

with two arguments [6]. Although themax function has nice properties, it lacks differentiability and so,

∗Corresponding author. Email: zhang@se.cuhk.edu.hk. Research supported by Hong Kong RGC Earmarked Grants

CUHK4233/01E and CUHK4174/03E.

1 November 16, 2004

1. Introduction

one cannot apply directly to this system of nonlinear equations the powerful computational techniques,

such as Newton’s method. To overcome the nondifferentiability of this system, different researchers have

proposed several smoothing approximation schemes for themax function with two arguments [5, 6, 14].

An overview of these approaches is given by Qi and Sun [13], where all these approaches are shown to

be a special case of the so-called smoothing method. In the particular case of themax function with two

arguments, several computationally stable approximations can be found in the literature [13]. However,

if a high dimensionalmax function appears in the formulation, one might also need a smooth approxima-

tion. Although, in theory, the smoothing method can be applied to approximate all kinds of nonsmooth

functions onRn, in practice, one cannot use it for a smooth approximation of then-dimensionalmax
function. This is due to the fact that the method involves the evaluation ofn-dimensional integrals, which

is computationally intractable. In addition, there exists another analytic approximation for the high di-

mensionalmax function known as the entropy type approximation [1, 2, 7, 10].

Most of the approximation approaches depend on a parameter, which determines the precision of the

approximation. It can be shown that, the approximating function converges to themax function as the

approximation parameter goes to a limit (usually 0 or∞). Since an approximation function is used to

replace themax function in the original problem, two important issues arise: the convergence of the ap-

proximating problems to the original problem, and the numerical stability of the approximation scheme.

Vazquezet. al. [17] focus on the convergence of using entropy type approximation function to the

higher dimensionalmax function. Under some conditions, the authors establish the relation between

the stationary points of the approximating function and the stationary points of themax function itself.

By applying the same entropy type smoothing approximation, Xu [18] proposes an algorithm to solve

the finitemin−max problems and proves that the proposed algorithm is globally convergent under cer-

tain assumptions. Xu also supports his analysis by some preliminary results showing that the entropy

type approximation is promising for solving finitemin−max problems. Unfortunately, entropy type

approximation may lead to overflow problems and hence, may suffer from numerical instability and slow

convergence. In a recent paper, Polaket. al. [12] study the numerical difficulties of using the entropy type

approximation in solving finitemin−max problems. The authors also discuss the tradeoff between the

accuracy and ill-conditioning. To deal with this tradeoff, they propose an adaptive algorithm that uses a

control mechanism for adjusting the approximation parameter during the solution process. This adaptive

algorithm circumvents the numerical difficulties, and consequently, leads to a stable solution method for

finite min−max problems.

The contribution of this paper is to provide a generic approximation scheme for the high dimensional

max function based on any smooth approximation of the two-dimensionalmax function. We propose

a method which utilizes the approximation functions of the two-dimensionalmax function and extends

them to higher dimensions via a recursive mechanism. It will become clear in the numerical results

section that the proposed scheme is stable and accurate. For an illustrative application of this method in

optimization we refer to [4].

We start with preliminary results related to approximation functions. This is followed by a section on

the proposed recursive smoothing method. To show the value of the proposed method, we provide illus-

trative applications and compare the performance of the proposed method with the well-known entropy

type approximation function.

2 November 16, 2004

2. Preliminary Results on Smoothing Methods

2 Preliminary Results on Smoothing Methods

We first derive some result for a smoothing technique already discussed in [1]. Although this result is

known we include for convenience a different short proof based on the elementary Lemma 2.1. To start

with our exposition of the smoothing technique, letf : Rn → R be a convex function and introduce the

function,F : Rn → [−∞,∞] given by

F (x) := limt↓0 tf(t−1x). (1)

As will be shown in Theorem 2.1, this limit always exists. In applications generally, the functionF is

nonsmooth, while the convex functionf is chosen to be differentiable. Notice that by relation (1), it is

immediately clear that the functionF is also positively homogeneous and convex. The next elementary

lemma (see for example [9]) is now crucial for the derivation of the main inequality.

Lemma 2.1 The functionf : Rn → R is convex onRn if and only if the functions : (0,∞) → R given

by

s(t) := t−1(f(y + tx)− f(y))

is non-decreasing on(0,∞) for everyx, y ∈ Rn.

Using Lemma 2.1, it is easy to show the next inequality. This result is already verified in [1] by means

of a more difficult and longer proof.

Theorem 2.1 For a convex functionf : Rn → R, the functionF , given by relation (1), is well defined.

Moreover, for everyx ∈ Rn andt > 0, the inequality

tf(t−1x)− F (x) ≤ tf(0)

holds.

Proof. Sincef is a convex function, it follows by Lemma 2.1 that for everyx ∈ Rn the function

t 7−→ t(f(t−1x)− f(0)) is non-increasing on(0,∞). Hence, we obtain

supt>0 t(f(t−1x)− f(0)) = limt↓0 t(f(t−1x)− f(0)) = F (x), (2)

and this shows the result. ¤

Introduce now for the convex functionf : Rn → R, the set of functionsf(·; t) : Rn → R, t > 0,

given by

f(x; t) := tf(t−1x). (3)

It is shown in the next result under some additional assumptions that the pointwise convergence in relation

(1) can be replaced bysupnorm convergence. In the sequel, for every compact setA ⊆ Rn we denote

sup{|h(x)| : x ∈ A} by ‖h‖A .

Lemma 2.2 For a given convex functionf : Rn → R, the following conditions are equivalent:

1. The functionF , given by relation (1), is finite everywhere.

2. For every compact setA ⊆ Rn, we havelimt↓0 ‖F − f(·; t)‖A = 0.

3 November 16, 2004

3. Recursive Smoothing

Proof. The implication of(2) ⇒ (1) is obvious. To show(1) ⇒ (2), we observe the following: Since

F andf are finite convex functions, we obtain by [Corollary 10.1.1, 15] that they are both continuous.

Moreover, if we introduce the functionsf(·; t) : Rn → R, t > 0 given by

f(x; t) := t(f(t−1x)− f(0)),

then by Lemma 2.1 we havef(·; s) ≥ f(·; t) for every0 < s < t. Also, by relation (2), we know that

limt↓0 f(x; t) = F (x). Hence the conditions of Dini’s theorem [Theorem 7.13, 16] hold and so for every

compact setA, we obtainlimt↓0 ‖F − f(·; t)‖A = 0. Using now

‖F − f(·; t)‖A ≤ ‖F − f(·; t)‖A + t|f(0)|,

the desired result follows. ¤

It is obvious that the first condition of Lemma 2.2 is satisfied if the functionf is Lipschitz continuous

on its domain. Let us now discuss two relations, which will be useful in the next section on recursive

smoothing. For any convex functionf and functionF given by relation (1), we know for finiteF thatF

is continuous. It is now an easy consequence of Lemma 2.2 that

limxt↓x0,t↓0 f(xt; t) = F (x0). (4)

Moreover, sinceF is continuous, we have

β := max{F (x) : ‖x‖∞ = 1} < ∞,

where‖.‖∞ denotes the Chebyshev norm onRn and this implies by Theorem 2.1 that

f(x)− f(0) ≤ F (x) = ‖x‖∞F (‖x‖−1
∞ x) ≤ β‖x‖∞ (5)

for everyx 6= 0. When we consider themax function in the next section, it is important to note thatβ in

the above relation is equal to 1.

Up to now, we only focused on deriving an upper bound. To derive a lower bound, we observe that in

many applications one can choose the differentiable convex functionf satisfyingf ≥ F . Since for every

t > 0 andx ∈ Rn

0 ≤ tf(t−1x)− tF (t−1x) = f(x; t)− F (x),

we obtain in this case a trivial lower bound.

At this point a natural question, related to real life applications, arises: GivenF , can one find a function

f satisfying equation (1)? Clearly, the answer to this question depends on the functionF . Moreover,

depending onF , there may exist different alternatives for the functionf . Nevertheless, to our belief

finding a generic procedure to provide an answer to this question is quite difficult and it is a kind of art

rather than a mathematical skill.

3 Recursive Smoothing

There exist different approximation functions with stable convergence properties, particularly for the two

dimensionalmax function. However, an analytic form may not be easily extended from two dimensions

to n dimensions. Before providing a solution to this problem, first notice that then dimensionalmax
function can be written recursively as follows

max{x1, · · · , xn} = max{max{x1, · · · , xm}, max{xm+1, · · · , xn}},

4 November 16, 2004

3. Recursive Smoothing

where1 < m < n. Following this simple observation, we propose a recursive procedure to construct

a high dimensional approximation for themax function with more than two variables. In the sequel,

f : R2 → R refers to the function that is used for approximating the two dimensionalmax function, i.e.,

limt↓0 tf(t−1x) = max{x1, x2}.

As an example for the two dimensional approximation [5], we might consider the following nondecreas-

ing, convex functionf given by

f(x) =

√
(x1 − x2)2 + 1 + x1 + x2

2
.

This function is also used in the numerical results section. We start now with defining the recursive

functionsfi,j : Rj−i+1 → R, 1 ≤ i < j ≤ n, associated with the functionf .

Definition 3.1 Letf : R2 → R be a nondecreasing convex function, and define for every1 ≤ i ≤ n− 1
the functionfi,i+1 : R2 → R by

fi,i+1(x) := f(x).

Moreover, for1 ≤ i < j ≤ n andk = j − i + 1 > 2, let the functionfi,j : Rk → R be given by

fi,j(xi, ..., xj) = f(fi,uk
(xi, ..., xuk

), flk,j(xlk , ..., xj)), (6)

where

uk := i + dk
2
e − 1 andlk :=

{
uk if k is odd

uk + 1 if k is even.

To simplify the notation for the above recursive procedure, we introduce for every1 ≤ i < j ≤ n, the

vectors

x(1) := (xi, ..., xuk
) andx(2) := (xlk ,xj),

and the associated vector

x =

{
(xi, ..., xh, ..., xj) if k is odd

(xi, ..., xuk,xlk , ..., xj) if k is even,

wherexh = xuk
= xlk wheneverk is odd. In other words, the vectorx is the proper concatenation of the

vectorsx(1) andx(2). The recursive procedure, defined in relation (6), can now be rewritten as

fi,j(x) = f(fi,uk
(x(1)), flk,j(x(2))), 1 ≤ j < i ≤ n. (7)

Before considering the computational scheme of evaluating the above recursive function, we first focus

on its theoretical properties. As shown by the next lemma, it follows by induction that for everyi < j,

the functionfi,j is an increasing convex function.

Lemma 3.1 If f : R2 → R is an increasing convex function then the functionfi,j : Rj−i+1 → R with

1 ≤ i < j is also an increasing convex function.

Proof. Clearly fork := j − i + 1 = 2 the functionfi,j = f is an increasing convex function. Suppose

now the induction hypothesis holds for the functionsfi,j satisfyingk ≤ p and consider a functionfi,j

satisfyingk = p+1. Sinceup+1 ≤ j−1 andlp+1 ≥ i+1, we obtainup+1−i+1 ≤ p andj−lp+1+1 ≤ p.

5 November 16, 2004

3. Recursive Smoothing

This shows by our induction hypothesis that the functionsfi,up+1 andflp+1,j are increasing and convex.

Hence by relation (7), the function

fi,j(x) = f(fi,up+1(x
(1)), flp+1,j(x(2)))

is increasing and convex. ¤

By Theorem 2.1 and Lemma 3.1, we immediately obtain for the increasing convex functionf the

following results:

1. For every1 ≤ i < j ≤ n, the functionFi,j : Rk → (−∞,∞] given by

Fi,j(x) := limt↓0 tfi,j(t−1x)

exists, and it is positively homogeneous and convex. Observe that the functionsFi,i+1, 1 < i <

n− 1 refer to the same function, which is also denoted byF .

2. For every1 ≤ i < j ≤ n, t > 0, andx ∈ Rj−i+1

tfi,j(t−1x)− Fi,j(x) ≤ tfi,j(0). (8)

3. If additionallyf ≥ F , then as a result of the monotonicity and by induction on every1 ≤ i < j ≤
n andx ∈ Rk we have

tfi,j(t−1x) ≥ Fi,j(x).

Lemma 3.2 If f : R2 → R is an increasing convex function and the functionF, given by relation (1), is

finite everywhere, then for every1 ≤ i < j, the functionFi,j is finite everywhere. Moreover, the recursion

Fi,j(x) = F (Fi,uk
(x(1)), Flk,j(x(2)))

holds.

Proof. Clearly fork := j − i + 1 = 2 the functionFi,i+1 = F is finite everywhere. Suppose now that

the result holds for the functionsFi,j satisfyingk ≤ p and consider some functionFi,j with k = p + 1.

By relations (1) and (7), it follows withxt := (tfi,up+1(t
−1x(1)), tflk+1(t

−1x(2))) that

Fi,j(x) = limt↓0 tf(t−1xt). (9)

Also by relation (7), we obtainlimt↓0 xt = x0 where

x0 = (Fi,up+1(x
(1)), Flp+1,j(x(2))).

This shows by our induction hypothesis that the vectorx0 belongs toR2 and, since the functionF is finite

everywhere, this implies by relations (4) and (9) that

Fi,j(x) = F (Fi,up+1(x
(1)), Flp+1,j(x(2))).

¤

We are ready to give an upper bound for the relation (8). This upper bound can be constructed by using

relation (5) and induction.

6 November 16, 2004

3. Recursive Smoothing

Lemma 3.3 Let f : R2 → R be an increasing convex function and for every1 ≤ i < j ≤ n, Fi,j be

finite. Then,

tfi,j(t−1x)− Fi,j(x) ≤ t(log2(k − 1) + 1)f(0)

wherek = j − i + 1.

Proof. Clearly, fork := j − i + 1 = 2 the functionfi,j(0) = f(0). So the result is true fork = 2.

Suppose by induction that the result is true fork ≤ p and consider somefi,j(0) with k = p + 1. By

relation (5), we obtain

fi,j(0) = f(fi,up+1(0), flp+1,j(0)) ≤ max(fi,up+1(0), flp+1,j(0)) + f(0).

Since for everyk ≥ 3, 2(uk − i + 1) ≤ k + 1 and hence2(up+1 − i) ≤ p, we obtain by our induction

hypothesis that

fi,j(0) ≤ (log2(up+1 − i) + 1)f(0) + f(0)

≤ (log2(p)f(0) + f(0)

= (log2(p) + 1)f(0).

Combining this by relation (8), we have the desired result

tfi,j(t−1x)− Fi,j(x) ≤ tfi,j(0) ≤ t(log2(k − 1) + 1)f(0).

¤

Remark 3.1 For themax function withn arguments, Lemma 3.3 implies the following relation

tf1,n(t−1x)−max{x1, · · · , xn} ≤ t(log2 n + 1)f(0).

It is desirable to have a fast computation scheme for the recursive approximation and its higher order

information. Before we show the computational complexity of these evaluations, notice that the recursive

functionfi,j(x) is a composition of severalf(x) functions. Therefore, fort > 0 if we define the smooth

approximation ofF (x) by

f(x; t) := tf(t−1x),

then the approximation function defined as

fi,j(x; t) := tfi,j(t−1x)

also becomes differentiable. Furthermore, we assume that there exists an oracle, which provides one of

the following outputs with an appropriate call:

1. The function value,f(x; t) at pointx for t > 0.

2. The gradient vector,∇f(x; t) at pointx for t > 0.

3. The Hessian matrix,∇2f(x; t) at pointx for t > 0.

Proposition 3.1 Givenk > 2 and the vectorx ∈ Rk, for everyi < j it requiresO(k) calls to the oracle

to compute the value offi,j(x; t).

7 November 16, 2004

4. Numerical Examples

Proof. A simple counting reveals that the procedure requires at mostdlog2(k − 1)e number of recursive

steps to complete the computation. At each step, says+1, twice steps calls are made. Hence, the overall

complexity is bounded by a constant times2dlog2(k−1)e ≤ 2(k − 1). Therefore, computing the value of

fi,j(x; t) requires at most2(k − 1) calls to the oracle. ¤

The next proposition shows that the higher order information offi,j(x; t) can also be computed in

polynomial time.

Proposition 3.2 Givenk > 2 and the vectorx ∈ Rk, for everyi < j it requiresO(k) calls to the oracle

to compute the value of the gradient,∇fi,j(x; t) and similarly,O(k) calls to compute the value of the

Hessian,∇2fi,j(x; t).

Proof. Since

fi,j(x; t) = f(fi,uk
(x(1); t), flk,j(x(2); t); t), (10)

by using the chain rule, we obtain

∇fi,j(x; t) =
∂f(fi,uk

(x(1); t); t)
∂fi,uk

(x(1); t)
∇fi,uk

(x(1); t) +
∂f(flk,j(x(2); t); t)

∂flk,j(x(2); t)
∇flk,j(x(2); t) (11)

and similarly,

∇2fi,j(x; t) = ∂f(fi,uk
(x(1);t);t)

∂fi,uk
(x(1);t)

∇2fi,uk
(x(1); t) + ∂f(flk,j(x

(2);t);t)

∂flk,j(x(2);t)
∇2flk,j(x(2); t)

+∂2f(fi,uk
(x(1);t);t)

∂2fi,uk
(x(1);t)

∇fi,uk
(x(1); t)(∇fi,uk

(x(1); t))T

+∂2f(flk,j(x
(2);t);t)

∂2flk,j(x(2);t)
∇flk,j(x(2); t)(∇flk,j(x(2); t))T

+ ∂2f(fi,uk
(x(1);t);t)

∂fi,uk
(x(1);t)∂flk,j(x(2);t)

∇fi,uk
(x(1); t)(∇fi,uk

(x(1); t))T

+ ∂2f(flk,j(x
(2);t);t)

∂fi,uk
(x(1);t)∂flk,j(x(2);t)

∇flk,j(x(2); t)(∇flk,j(x(2); t))T

The complexity result follows from the same arguments as in the proof of Proposition 3.1. ¤

4 Numerical Examples

As mentioned in the introduction section, the recursive smoothing method can be applied to diverse

problems modelled by a high dimensionalmax function. Inmin−max optimization the smooth approx-

imation is directly used to replace themax function, and so that the resulting model becomes a regular

nonlinear programming problem [2]. On the other hand, in complementarity problems the system of

equalities and nonnegativity constraints is equivalently modelled as a system of equalities composed of

high dimensionalmax functions. After replacing themax functions with their approximations, a system

of nonlinear inequalities are formed. Then different methods, like Newton’s method, are utilized to solve

this system [11]. In the remaining part of this section we will give two elementary examples that will

focus on the main idea of these applications. Also, we will discuss the solution approach with the re-

cursive approximation method and compare its performance with another approximation function of the

high dimensionalmax function.

Before considering any example, let us introduce the following entropy type functiong : Rn → R,

which is one of the most frequently used approximations in the literature [2, 7, 10, 12, 18]:

g(x) = log

(
n∑

i=1

exi

)
. (12)

8 November 16, 2004

4. Numerical Examples

This function exhibits the following convergence property

limt↓0 tg(t−1x) = limt↓0 t log

(
n∑

i=1

e
xi
t

)
= max{x1, · · · , xn}.

Therefore, (12) is successfully utilized in solving bothmin−max optimization and VLCP problems

[2, 10–12, 18].

Notice that an overflow easily occurs when the exponential function in (12) is computed with a very

large argument. A well-known technique to handle this potential problem is introducing a constantz ≥
max{x1, · · · , xn} and then computing

gz(x; t) := t log

(
n∑

i=1

e
xi−z

t

)
+ z. (13)

In order to apply the recursive approximation method, we choose the following nondecreasing convex

functionf : R2 → R

f(x) =

√
(x1 − x2)2 + 1 + x1 + x2

2
.

which leads to the following approximation function

f(x; t) := tf(t−1x) =

√
(x1 − x2)2 + t2 + x1 + x2

2
. (14)

The right hand side of the equation (14) is the well-known Chen-Harker-Kanzow-Smale function [5].

This function has been extensively used for approximating the two dimensionalmax function, and it is

known to be more stable than (12).

Although the technique in (13) effectively overcomes the difficulty of computing (12), another over-

flow problem occurs whenever the gradient or the Jacobian is computed. However, with the recursive

approximation function using (14), the computation of the higher order information does not cause any

overflow problems. The following elementary examples demonstrate this observation.

Example 4.1 Solve the following optimization problem

min
x∈R3

max{2x1, 3x2 − 4, 10x2
3}.

The arguments of themax function in Example 1 are differentiable. Hence, if we replace themax
function with its smooth approximation, the resulting problem becomes a smooth unconstrained nonlinear

programming problem. By using (13), the approximation becomes

gz(x; t) = t log(et−1(2x1−z) + et−1(3x2−4−z) + et−1(10x2
3−z)) + z, (15)

wherez ≥ max{2x1, 3x2 − 4, 10x2
3}. On the other hand by using (14), we have the following recursive

approximation

f1,3(x; t) := f(f(2x1, 3x2 − 4; t), f(3x2 − 4, 10x2
3; t); t). (16)

Then fort > 0, we are interested in comparing the computational aspects of solving

min
x∈R3

gz(x; t)

and

min
x∈R3

f1,3(x; t).

9 November 16, 2004

4. Numerical Examples

A straightforward approach to solve these optimization problems is the gradient method [2]. In this

approach, fort > 0 we need to compute the gradients of both (15) and (16) denoted by

5gz(x; t) = (5g(1)
z (x; t),5g(2)

z (x; t),5g(3)
z (x; t))T (17)

and

5f1,3(x; t) = (5f
(1)
1,3 (x; t),5f

(2)
1,3 (x; t),5f

(3)
1,3 (x; t))T , (18)

respectively. Consider the computation of the first component of (17)

5g(1)
z (x; t) =

2(et−1(2x1−z))
et−1(2x1−z) + et−1(3x2−4−z) + et−1(10x2

3)
.

Notice that the numerator converges fast to zero when the difference betweenz and the arguments of

themax function is big. Therefore, if one uses (17), the first order information required for the gradient

method diminishes. On the other hand, the computation of the gradient by (18) is more stable as a direct

consequence of using (14). In order to support these statements, we have applied the unconstrained

optimization procedurefminunc in MATLAB. We have selected the vector(1, 1, 1) as the starting point

and used equations (15-18) as the function and the gradient pointers. As we expected, even with parameter

t set to1.0e-4, the first approximation (15) using (17) has led to an overflow problem, but the recursive

approximation (16) using (18) has converged to the point,(−9,−1, 0) .

Example 4.2 Find a solutionx ∈ R3 to the following system of equations

H(x) :=




max{2x1, 3x2 − 4, 10x2
3}

max{x2
1, x2 + 11, x3 − 1}

max{x1, x2 − 0.4, 2x2
3}


 = 0.

In this example we are interested in solving a system of nonlinear equations. We first replace themax
functions with their smooth approximations. Letz1 ≥ max{2x1, 3x2 − 4, 10x2

3}, z2 ≥ max{x2
1, x2 +

11, x3−1}, andz3 ≥ max{x1, x2−0.4, 2x2
3} then by using (13) and (14), we can write the approximation

functions

g(1)
z1

(x; t) : = t log(et−1(2x1−z1) + et−1(3x2−4−z1) + et−1(10x2
3−z1)) + z1,

g(2)
z2

(x; t) : = t log(et−1(x2
1−z2) + et−1(x2+11−z2) + et−1(x3−1−z2)) + z2,

g(3)
z3

(x; t) : = t log(et−1(x1−z3) + et−1(x2−0.4−z3) + et−1(2x2
3−z3)) + z3,

and

f
(1)
1,3 (x; t) : = f(f(2x1, 3x2 − 4; t), f(3x2 − 4, 10x2

3; t); t),

f
(2)
1,3 (x; t) : = f(f(x2

1, x2 + 11; t), f(x2 + 11, x3 − 1; t); t),

f
(3)
1,3 (x; t) : = f(f(x1, x2 − 0.4; t), f(x2 − 0.4, 2x2

3; t); t).

Define

Gz(x; t) := (g(1)
z1

(x; t), g(2)
z2

(x; t), g(3)
z3

(x; t))T ,

wherez := (z1, z2, z3) and

F1,3(x; t) := (f (1)
1,3 (x; t), f (2)

1,3 (x; t), f (3)
1,3 (x; t))T .

Then fort > 0, we want to compare the solution efforts invested in solving

Gz(x; t) = 0, (19)

10 November 16, 2004

5. Conclusions and Future Research

and

F1,3(x; t) = 0. (20)

Commonly used methods for solving a system of nonlinear equations require the computation of the

first order information. Therefore, we need to compute the Jacobians of the functionsGz(x; t) and

F1,3(x; t). Similar to the computation of the gradient (17), the computation of the Jacobian ofGz(x; t)
creates overflow problems. More importantly, the Jacobian becomes almost singular. In other words the

reciprocal condition of the Jacobian approaches to0 fast [8]. In contrast, the recursive computation of

the Jacobian ofF1,3(x; t) is more stable and leads to a nonsingular Jacobian. To solve (19) and (20), we

have used the MATLAB procedurefsolve, which is designed to solve a system of nonlinear equations.

For both test problems, we have provided the function and Jacobian pointers as an input to thefsolve
procedure. Moreover, we have selected the vector(1, 1, 1) as the starting point.

Table 1 shows the results with both approximations. The column 1 shows differentt values. For eacht

value, the approximations (19) and (20) are solved byfsolve, and the respective results, denoted byH∗,
are reported in columns 2 and 3. Clearly, decreasing thet value leads to better solutions. However, it may

cause the Jacobian ofGz(x; t) converging to a singular matrix rapidly. Therefore, as the figures in the

second column suggest, overflow problems occur with the first approximation scheme. In the meanwhile,

the third column shows that the recursive approximation behaves more stable than the first approximation,

and gives improving solutions with decreasingt.

t Approximation (19) Approximation (20)

1.0e-1 H∗ = (4.1e-3, 3.6e-2, 7.0e-4)T H∗ = (3.2e -6, 1.1e-2, 6.0e-6)T

1.0e-2 No Solution H∗ = (1.3e-8, 6.0e-4, 2.0e-9)T

1.0e-4 No Solution H∗ = (7.0e-15, 2.1e-5, 1.3e-15)T

1.0e-6 No Solution H∗ = (4.1e-14, 3.0e-8, 8.0e-16)T

Table 1: Comparison of the results of the two approximation schemes for Example 2.

5 Conclusions and Future Research

There exist many applications of the high dimensionalmax function. As a continuation of this research,

the performance of the proposed method may be studied on these problems. An example of such an

application could be in nonlinear programming, where there exists a set of difficult constraints. These

constraints can be replaced with a single constraint after aggregating them by themax function. Again a

high dimensional approximation would be required for smoothing themax function. In all these applica-

tions a rigorous analysis is required, since the arguments of themax function will be nontrivial functions.

A natural extension of such a study should discuss the convergence of the stationary points of the approx-

imating problems to the stationary points of the original problem. We believe that further research along

these lines will be fruitful and promising.

References

[1] Ben-Tal, A. and M.Teboulle. A smoothing technique for nondifferentiable optimization problems.

In Dolecki, editor,Optimization, Lectures notes in Mathematics 1405, pages 1–11, New York, 1989.

Springer Verlag.

11 November 16, 2004

REFERENCES

[2] Bertsekas, D.P.Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New

York, 1982.

[3] Birbil, Ş.̇I., Frenk, J.B.G. and S. Zhang. A finite approximation approach tomin−max optimiza-

tion. Forthcoming, 2004.

[4] Birbil, Ş.̇I., Frenk, J.B.G. and S. Zhang. Generalized fractional programming with user interaction.

Technical Report SEEM2004-2, The Chinese University of Hong Kong, Department of Systems

Engineering and Engineering Management, 2004.

[5] Chen, C. and O.L. Mangasarian. Smoothing methods for convex inequalities and linear comple-

mentarity problems.Mathematical Programming, 71:51–69, 1995.

[6] Facchinei, F., Jiang, H. and L. Qi. A smoothing method for mathematical programs with equilibrium

constraints.Mathematical Programming, 85:107–134, 1999.

[7] Fang, S.-C., Rajasekara, J.R. and H.-S. Tsao.Entropy Optimization and Mathematical Program-

ming. Kluwer Academic Publishers, Boston, 1997.

[8] Golub, G.H. and C.F. Loan.Matrix Computations. Johns Hopkins University, Baltimore, MD, 1996.

[9] Hiriart-Urruty, J.B. and C. Lemarechal.Convex Analysis and Minimization Algorithms, volume 1.

Springer Verlag, Berlin, 1993.

[10] Li, X. An entropy-based aggregate method for minimax optimization.Engineering Optimization,

18:277–285, 1992.

[11] Peng, J.M. and Z. Lin. A non-interior continuation method for generalized linear complementarity

problems.Mathematical Programming, 86:533–563, 1999.

[12] Polak, E., Royset, J.O. and R.S. Womersley. Algorithms with adaptive smoothing for the finite

min−max problems.J. of Optimization Theory and Applications, 119:457–484, 2003.

[13] Qi, L. and D. Sun. Smoothing functions and smoothing Newton method for complementarity and

variational inequality problems.J. of Optimization Theory and Applications, 113:121–147, 2002.

[14] Qi, L. and X. Chen. A globally convergent successive approximation methods for nonsmooth equa-

tions. SIAM J. Control Optim., 33:402–418, 1995.

[15] Rockafellar, R.T.Convex Analysis. Princeton University Press, Princeton, New Jersey, 1972.

[16] Rudin, W.Principles of Mathematical Analysis. McGraw-Hill, New York, 1982.

[17] Vazquez, F.G., G̈unzel, H and H.T. Jongen. On logarithmic smoothing of the maximum function.

Annals of Operations Research, 101:209–220, 2001.

[18] Xu, S. Smoothing method for minimax problems.Computational Optimization and Applications,

20:267–279, 2001.

12 November 16, 2004

