Design of Phase Codes for Radar Performance Optimization With a Similarity Constraint

Antonio De Maio, Senior Member, IEEE, Silvio De Nicola, Student Member, IEEE, Yongwei Huang, Zhi-Quan Luo, Fellow, IEEE, and Shuzhong Zhang

Abstract—This paper deals with the design of coded waveforms which optimize radar performances in the presence of colored Gaussian disturbance. We focus on the class of phase coded pulse trains and determine the radar code which approximately maximizes the detection performance under a similarity constraint with a prefixed radar code. This is tantamount to forcing a similarity between the ambiguity functions of the devised waveform and of the pulse train encoded with the prefixed sequence. We consider the cases of both continuous and finite phase alphabet, and formulate the code design in terms of a nonconvex, NP-hard quadratic optimization problem. In order to approximate the optimal solutions, we propose techniques (with polynomial computational complexity) based on the method of semidefinite program (SDP) relaxation and randomization. Moreover, we also derive approximation bounds yielding a “measure of goodness” of the devised algorithms. At the analysis stage, we assess the performance of the new encoding techniques both in terms of detection performance and ambiguity function, under different choices for the similarity parameter. We also show that the new algorithms achieve an accurate approximation of the optimal solution with a modest number of randomizations.

Index Terms—Radar signal processing, nonconvex quadratic optimization, semidefinite program relaxation, randomization.

I. INTRODUCTION

THE problem of radar waveform design has recently received a noticeable attention from the signal processing community. The invention of new flexible waveform generators and of high speed signal processing hardware has determined the development of advanced and often very sophisticated algorithms for radar signal shaping [1], [2].

Waveform optimization in the presence of colored disturbance with known covariance matrix has been addressed in [3]. Three techniques based on the maximization of the signal-to-noise ratio (SNR) are introduced and analyzed. Two of them also exploit the degrees of freedom provided by a rank deficient disturbance covariance matrix. In [4], a signal design algorithm relying on the maximization of the SNR under a similarity constraint with a given waveform is proposed and assessed. The solution potentially emphasizes the target contribution and deemphasizes the disturbance, preserving also some characteristics of the desired waveform. In [5] a signal subspace framework, which allows the derivation of the optimal radar waveform (in the sense of maximizing the SNR at the output of the detector) for a given scenario, is presented under the Gaussian assumption for the statistics of both the target and the clutter. Signal shaping for target matched-illumination has been considered in [6]–[10]. Moreover, further very recent and advanced techniques for radar waveform design can be found in [2] and references therein.

A quite different signal design approach relies on the modulation of a pulse train parameters (amplitude, phase, and frequency) in order to synthesize waveforms with some specified properties. This technique is known as the radar coding and a substantial bulk of work is nowadays available in the literature about this topic. Here we mention Barker, Frank, and Costas codes which lead to waveforms whose ambiguity functions share good resolution properties both in range and Doppler. This list is not exhaustive and a comprehensive treatment can be found in [11] and [12]. Nevertheless, it is worth pointing out that the ambiguity function is not the only relevant objective function for code design in operating situations where the disturbance is not white. This might be the case of optimum radar detection in the presence of colored disturbance, where the standard matched filter is no longer optimum and the most powerful radar receiver requires whitening operations.

In [13], focusing on the class of linearly coded pulse trains (both in amplitude and in phase), the authors propose a code selection algorithm which maximizes the detection performance but, at the same time, is capable of controlling both the region of achievable values for the Doppler estimation accuracy and the degree of similarity with a prefixed radar code. The algorithm first relaxes the original problem into a convex one which belongs to the SDP class; then it derives an optimum code through a rank-one decomposition of an optimal solution of the relaxed problem.

Manuscript received January 07, 2008; revised September 24, 2008. First published November 7, 2008; current version published January 30, 2009. The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Daniel P. Palomar. This work was supported in part by the Hong Kong RGC Earmarked Grants CUHK418505 and CUHK418406. The work of Z.-Q. Luo was supported in part by the National Science Foundation by Grant DMS 2416. This work was performed while A. De Maio and S. De Nicola were visiting the Department of Systems Engineering and Engineering Management, Chinese University of Hong Kong.

A. De Maio and S. De Nicola are with the Dipartimento di Ingegneria Elettronica e delle Telecomunicazioni, Università degli Studi di Napoli “Federico II,” 80125 Napoli, Italy (e-mail: ademaio@unina.it; silviodenicola@gmail.com).

Y. Huang and S. Zhang are with the Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Shatin, Hong Kong (e-mail: ywhuang@se.cuhk.edu.hk; zhang@se.cuhk.edu.hk).

Z.-Q. Luo is with the Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities, MN 55455 USA (e-mail: luozq@ece.umn.edu).

Color versions of one or more of the figures in this paper appear online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2008.2008247
Nevertheless, in several practical situations, the radar amplifiers usually work in saturation conditions and, hence, an amplitude modulation might be difficult (even if not impossible) to perform. To this end, in the present paper, we focus on constant modulus waveform and consider the synthesis of phase coding schemes for radar coherent pulse trains. We study the cases of both continuous and finite phase alphabet, and formulate the code design in terms of a nonconvex, NP-hard, quadratic optimization problem. In order to approximate the optimal solutions, we propose techniques (with polynomial computational complexity) based on SDP relaxation and randomization. We also evaluate, in both the considered cases, the approximation bound which represents a “measure of goodness” of an approximation technique as it characterizes the quality of the solutions produced by the method. At the analysis stage, we assess the performance of the new encoding algorithms both in terms of detection capabilities and ambiguity function. The results show that they achieve an accurate approximation of the optimal solution with a quite modest number of randomizations. Moreover, depending on the design constraints, it is possible to trade off detection performance for desirable properties of the waveform ambiguity function.

The paper is organized as follows. In Section II, we present the model for both the transmitted and the received coded signal. In Section III, we discuss the criteria exploited for phase code design. In Sections IV and V, we introduce the new algorithms and derive the approximation bounds with reference to the cases of both continuous and finite code alphabet. In Section VI, we assess the performance of the proposed encoding methods also in comparison with standard radar codes. Finally, in Section VII, we draw conclusions and outline possible future research tracks.

II. SYSTEM MODEL

We consider a radar system which transmits a phase coded coherent burst of pulses

\[s(t) = a_t u(t) \exp[j(2\pi f_0 t + \phi)] \]

where \(a_t \) is the transmit signal amplitude \(j = \sqrt{-1} \)

\[u(t) = \sum_{i=0}^{N-1} a(i)p(t-iT_r) \]

is the signal’s complex envelope (see Fig. 1), \(p(t) \) is the signature of the transmitted pulse, \(T_r \) is the Pulse Repetition Time (PRT), \([a(0), a(1), \ldots, a(N-1)] \in \mathbb{C}^N \) is the radar phase code (i.e., \(a(i) = \exp[j\phi(i)], i = 0, \ldots, N-1, f_0 \) is the carrier frequency, and \(\phi \) is a random phase. Moreover, the pulse waveform \(p(t) \) is of duration \(T_p \leq T_r \) and has unit energy, i.e.

\[\int_0^{T_p} |p(t)|^2 dt = 1 \]

1SDP relaxation and randomization techniques have also been used in other signal processing fields. For instance in maximum likelihood multiuser detection [14], multiple input multiple output (MIMO) decoding [15], and transmit beamforming [16].

where \(|\cdot| \) denotes the modulus of a complex number. The signal backscattered by a target with a two-way time delay \(\tau \) and received by the radar is

\[r(t) = \alpha_r e^{j2\pi(f_0+f_d)(t-\tau)}u(t-\tau) + n(t) \]

where \(\alpha_r \) is the complex echo amplitude (accounting for the transmit amplitude, phase, target reflectivity, and channels propagation effects), \(f_d \) is the target Doppler frequency, and \(n(t) \) is additive disturbance due to clutter and thermal noise.

This signal is down-converted to baseband and filtered through a linear system with impulse response \(h(t) = p^*(t-\tau) \), where \((\cdot)^* \) denotes complex conjugate. Let the filter output be

\[v(t) = \alpha_r e^{j2\pi f_0 t} \sum_{i=0}^{N-1} a(i)e^{j2\pi if_d T_r} \times \chi_p(t - iT_r - \tau, f_d) + w(t) \]

where \(\chi_p(\lambda, f) \) is the pulse waveform ambiguity function [11], i.e.

\[\chi_p(\lambda, f) = \int_{-\infty}^{+\infty} p(\psi)p^*(\psi - \lambda)e^{j2\pi f \psi} d\psi \]

and \(w(t) \) is the downconverted and filtered disturbance component. The signal \(r(t) \) is sampled at \(t_k = \tau + kT_r, k = 0, \ldots, N-1 \), providing the observables

\[v(t_k) = \alpha a(k)e^{j2\pi f_d T_r} \chi_p(0, f_d) + w(t_k), \quad k = 0, \ldots, N-1 \]

2We neglect range straddling losses and also assume that there are no target range ambiguities. This last assumption is usually met in low pulse repetition frequency (LPRF) radars (and in particular in medium-long range radars for early warning applications), but might be restrictive for high PRF (HPRF) systems.

Fig. 1. Phase-coded pulse train \(u(t) \) for \(N = 4, T_r = 3T_p \) and \(p(t) \) with rectangular shape.
where \(\alpha = \alpha_r e^{-j2\pi f_d \tau} \). Since \(\chi(0, f_d) \) does not depend on \(\alpha(k) \)'s and, as a consequence, does not affect the design of radar code, we assume hereafter that \(\chi(0, f_d) = 1 \) for convenience. Hence, we can rewrite the samples \(v(t_k) \) as

\[
v(t_k) = \alpha a e^{j2\pi f_d T_r} + w(t_k), \quad k = 0, \ldots, N - 1.
\]

Moreover, denoting by \(\mathbf{c} = [a(0), a(1), \ldots, a(N - 1)]^T \) the \(N \)-dimensional column vector containing the code elements, \(\mathbf{p} = [1, e^{j2\pi f_d T_r}, \ldots, e^{j2\pi (N-1)f_d T_r}]^T \) the temporal steering vector, \(\mathbf{v} = [v(t_0), v(t_1), \ldots, v(t_{N-1})]^T \), and \(\mathbf{w} = [w(t_0), w(t_1), \ldots, w(t_{N-1})]^T \), we get the following vectorial model for the backscattered signal

\[
\mathbf{v} = \alpha \mathbf{c} \odot \mathbf{p} + \mathbf{w}
\]

where \(\odot \) denotes the Hadamard element-wise product [17].

III. Radar Phase Code Design Criteria

As aforementioned, we are looking for the phase code which optimizes the detection performance, under a similarity constraint with a given radar code exhibiting a good ambiguity function. In this section, we formulate mathematically the aforementioned criterion highlighting how the detection probability can be maximized and the similarity constraint can be enforced. To this end, we recall that the problem of detecting a target in the presence of observables described by the model (1) can be formulated in terms of the following binary hypotheses test

\[
\begin{align*}
H_0 & : \mathbf{v} = \mathbf{w} \\
H_1 & : \mathbf{v} = \alpha \mathbf{c} \odot \mathbf{p} + \mathbf{w}.
\end{align*}
\]

(2)

We assume that the disturbance vector \(\mathbf{w} \) is a zero-mean complex circular Gaussian vector with known positive definite covariance matrix

\[
E[\mathbf{ww}^\dagger] = M
\]

(\(E[\cdot] \) denotes mathematical expectation and \((\cdot)^\dagger \) conjugate transpose). This implies that the generalized likelihood ratio test (GLRT) detector for the problem (2), which coincides with the optimum test [18] (according to the Neyman-Pearson criterion) if the phase of \(\alpha \) is uniformly distributed in \([0, 2\pi]\), is given by

\[
|\mathbf{v}^\dagger M^{-1}(\mathbf{c} \odot \mathbf{p})|^2 \bigg|_{H_1} \geq G \bigg|_{H_0} \tag{3}
\]

where \(G \) is the detection threshold set according to a desired value of the false alarm Probability \((P_{fa}) \). An analytical expression of the detection Probability \((P_d) \), for a given value of \(P_{fa} \), is available for both the cases of nonfluctuating and fluctuating target. In the former case (NFT)

\[
P_d = Q \left(\sqrt{2|\alpha|^2(\mathbf{c} \odot \mathbf{p})^\dagger M^{-1}(\mathbf{c} \odot \mathbf{p})}, -2\ln P_{fa} \right)
\]

(4)

\(^\dagger \) is the transpose operator.

while, for the case of Rayleigh fluctuating target (RFT) with \(E[|\alpha|^2] = \sigma_d^2 \)

\[
P_d = \exp \left(\frac{\ln P_{fa}}{1 + \sigma_d^2(\mathbf{c} \odot \mathbf{p})^\dagger M^{-1}(\mathbf{c} \odot \mathbf{p})} \right)
\]

(5)

where \(Q(\cdot, \cdot) \) denotes the Marcum \(Q \) function of order 1. These last expressions show that, given \(P_{fa} \), \(P_d \) depends on the radar code, the disturbance covariance matrix and the temporal steering vector only through the SNR, defined as

\[
\text{SNR} = \left\{ \begin{array}{ll}
|\alpha|^2(\mathbf{c} \odot \mathbf{p})^\dagger M^{-1}(\mathbf{c} \odot \mathbf{p}) & \text{NFT} \\
\sigma_d^2(\mathbf{c} \odot \mathbf{p})^\dagger M^{-1}(\mathbf{c} \odot \mathbf{p}) & \text{RFT}
\end{array} \right.
\]

(6)

Moreover, \(P_d \) is an increasing function of SNR and, as a consequence, the maximization of \(P_d \) can be obtained maximizing the quadratic form

\[
(\mathbf{c} \odot \mathbf{p})^\dagger M^{-1}(\mathbf{c} \odot \mathbf{p}) = \mathbf{c}^\dagger \mathbf{R} \mathbf{c}
\]

(7)

where \(\mathbf{R} = M^{-1} \odot (\mathbf{pp}^\dagger)^* \), over the radar code. We just highlight that \(\mathbf{R} \) is the Hadamard product of two positive semidefinite matrices, and hence \(\mathbf{R} \) is itself positive semidefinite ([19, p. 1352, A.77]).

If the maximization of (7) is performed under only an energy constraint for the transmitted vector (i.e., \(|\mathbf{c}|^2 = N \), where \(|| \cdot || \) denotes the Euclidean norm of a complex vector), the optimum code is proportional to the eigenvector of \(\mathbf{R} \) corresponding to the largest eigenvalue. Unfortunately, this solution does not usually belong to the class of phase codes and, even if it provides the best detection performance, it does not usually exhibit good ambiguity properties (i.e., a narrow main peak both in range and in Doppler and relatively low sidelobe peaks). Enforcing a similarity constraint with a given phase code \(\mathbf{c}_0 \), which shares a good ambiguity, seems a reasonable way to optimize \(P_d \) and, at the same time, of controlling the ambiguity distortion. This is tantamount to optimizing the detection performance in a suitable neighborhood of a known code, where the ambiguity function exhibits acceptable behavior. In this paper, we exploit the \(l_\infty \) norm\(^4\) to impose the similarity, namely we force

\[
||\mathbf{c} - \mathbf{c}_0||_\infty \leq \epsilon
\]

where \(0 \leq \epsilon \leq 2 \) is a real parameter ruling the degree of similarity. We also consider two possibilities for the entries of \(\mathbf{c} \). The former just assumes that \(\mathbf{c} \) is a phase code, namely the modulus of the \(k \)th entry \(|\mathbf{c}(k)| = 1 \), \(k = 1, \ldots, N \). The latter considers the case of a finite code alphabet of size \(M \), i.e., \(\mathbf{c}(k) \in \{1, e^{j2\pi/M}, \ldots, e^{j2\pi(M-1)/M}\} \), \(k = 1, \ldots, N \). In this last situation, we also suppose that the entries of the similarity code belong to the same alphabet as the sought vector. In the next two sections, we introduce phase coding algorithms for each of the aforementioned situations.

\(^4\)Given an \(N \)-dimensional complex vector \(\mathbf{x} \) its \(l_\infty \) norm [17] is defined as \(||\mathbf{x}||_\infty = \max_{k \in \{1, \ldots, N\}} |x(k)| \).
IV. PHASE CODING ALGORITHM WITH SIMILARITY CONSTRAINT (PCA-SC)

In this section, we focus on the case \(|c(k)| = 1, k = 1, \ldots, N\), and formulate the phase code design in terms of the following complex quadratic optimization problem

\[
\begin{align*}
\max & \quad \mathbf{c}^\dagger \mathbf{Rc} \\
\text{s.t.} & \quad \|\mathbf{c} - \mathbf{a}_0\|_{\infty} \leq \epsilon \\
& \quad |c(k)| = 1, \quad k = 1, \ldots, N \quad (8)
\end{align*}
\]

where the parameter \(\epsilon\) rules the set of admissible codes. Specifically, decreasing \(\epsilon\) is tantamount to reducing the size of the feasible region. The similarity constraint in (8) can be equivalently written as \(|c(k) - a_0(k)| \leq \epsilon\), or \(Re\{c(k)a_0(k)\} \geq 1 - \epsilon^2/2\) for \(k = 1, \ldots, N\), which implies \(\arg c(k) \in \gamma_k, \gamma_k + \delta_c\), where \(\gamma_k = \arg a_0(k) - \arccos(1 - \epsilon^2/2)\) and \(\delta_c = 2\arccos(1 - \epsilon^2/2)\) for \(k = 1, \ldots, N\). Based on this observation, (8) can be recast as

\[
\begin{align*}
\max & \quad \mathbf{c}^\dagger \mathbf{Rc} \\
\text{s.t.} & \quad \arg c(k) \in \gamma_k, \gamma_k + \delta_c \\
& \quad |c(k)| = 1, \quad k = 1, \ldots, N. \quad (9)
\end{align*}
\]

Notice that in the instance of \(\epsilon = 2\) (or equivalently \(\delta_c = 2\pi\)), the phase constraints of (9) are redundant and the problem reduces to

\[
\begin{align*}
\max & \quad \mathbf{c}^\dagger \mathbf{Rc} \\
\text{s.t.} & \quad |c(k)| = 1, \quad k = 1, \ldots, N. \quad (10)
\end{align*}
\]

Even the simpler formulation (10) is NP-hard [20], [21], but there exist efficient approximation algorithms, based on relaxation and randomization, which achieve an accurate approximation of the optimal solution with a modest number of randomizations [21], [22].

According to the NP-hard nature of problem (9), one cannot find polynomial time algorithms for computing its optimal solutions. As a consequence, in the following, we focus on approximation techniques and propose the following relaxation and randomization algorithm which provides a randomized feasible solution of (9).

Algorithm 1: PCA-SC

1) Solve the SDP problem below and denote by \(\hat{\mathbf{Z}}\) an optimal solution

\[
\begin{align*}
\text{(SDP)} & \quad \max\ \text{tr}(\mathbf{RZ}) \\
\text{s.t.} & \quad Z_{kk} = 1, \quad k = 1, \ldots, N \\
& \quad \mathbf{Z} \succeq 0
\end{align*}
\]

\((Z_{kk}\) denotes the \((k, k)\)th entry of \(\mathbf{Z}\) and \(\mathbf{Z} \succeq 0\) indicates that \(\mathbf{Z}\) is positive semidefinite.

2) Generate a random vector \(\xi \in \mathbb{C}^N\) from the complex normal distribution \(\mathcal{N}(0, \mathbf{Y})\) where \(\mathbf{Y} = \hat{\mathbf{Z}} \odot \mathbf{y}_e, \mathbf{y}_e\), where \(\mathbf{y}_e = [e^{j\pi/4}, \ldots, e^{j\pi N}]^T\).

3) Assign each \(c(k) = y^*_e(k)\sigma(\xi_k), k = 1, \ldots, N\), where

\[
\sigma(x) = e^{j\pi x^2/\delta_c}, x \in \mathbb{C}.
\]

We point out that, in order to improve the approximation quality, the randomization steps (2 and 3) are repeated several times, and the randomized feasible solution yielding the largest objective function will be chosen as the approximate solution. As it will be shown in the performance analysis, the proposed randomization can achieve an accurate approximation of the optimal solution with a quite modest number of randomizations.

As to the computational complexity connected with the implementation of the algorithm, the solution of the SDP relaxation requires \(O(N^{3.5})\) floating point operations (flops)\(^6\) whereas each randomization involves \(O(N^2)\) flops [14]. It follows that, for a modest number of randomizations, the most relevant contribution to the computational is connected with the SDP solution.

Finally, we explicitly acknowledge that, at the current state of the art, most radar systems use phase-coded waveforms, where the phases are taken from a finite and regularly spaced alphabet. This represents a limiting factor that prevents the practical realization of the PCA-SC. Nevertheless, even if the current technology is not able to implement on the field the proposed algorithm, it may not be definitely ruled out in the near future.

A. Approximation Bound

A “measure of goodness” of an approximation algorithm is provided by the approximation bound which characterizes the quality of the produced solutions. In the literature, a randomized approximation method for a maximization problem has an approximation bound (or performance guarantee, or worst case ratio) \(R \in (0, 1]\). If for all instances of the problem, it always delivers a feasible solution whose expected value is at least \(Rt\) times the maximum value. Such an algorithm is usually called randomized \(R\)-approximation algorithm. More precisely, let \(v(\cdot)\) be the maximum value of an instance of a given problem \((\cdot)\), then a feasible solution \(z\) produced by a randomized \(R\)-approximation algorithm, complies with

\[
E[v(\text{the objective function evaluated at } z)] \geq Rv(\cdot).
\]

It is clear that an algorithm produces a better approximation, if the approximation bound is closer to 1. In this subsection, we aim at establishing an approximation bound for Algorithm 1.

Theorem 4.1: Denoting by \(z\) an output of Algorithm I and by \(v(\text{SDP})\) the optimal value of SDP, the following inequality holds true

\[
E[z^\dagger Rz] \geq Rv(\text{SDP})
\]

where

\[
R_e = \frac{\pi(1 - \cos(\delta_c))}{2(\pi - \delta_c)^2}
\]

that is, Algorithm I has an approximation bound \(R_e\).

\[^6\text{Herein, we use the usual Landau notation } O(n); \text{ hence, an algorithm is } O(n)\text{ if its implementation requires a number of flops proportional to } n\text{ [23].}\]
Proof: Let \(u_k = (w^* / (4\sqrt{\pi})) y^*_k(k) \), where \(w \) is the complex number

\[
w = \frac{2\pi (-\sin \delta_c + j(1 - \cos \delta_c))}{2\pi - \delta_c}.
\]

To compute \(E[z(k)z^*(l)] \), we exploit the equality

\[
E[z(k)z^*(l)] = -u_k y^*_k E[\xi(k)\xi^*(l)] + u_k E[\xi(k)z^*(l)] + u^*_k E[\xi^*(l)z(k)] + E[(u_k \xi(k) - z(k))(u^*_k \xi^*(l) - z(l))^*].
\]

We now evaluate the first three terms in the right-hand side of the above equality

1) \(-u_k y^*_k E[\xi(k)\xi^*(l)] = -((1/(16\pi)))|w|^2 \hat{Z}_{kl}.\)
2) \(u_k E[\xi(k)z^*(l)] = (1/(16\pi)|w|^2 \hat{Z}_{kl}.\)

Since

\[
\begin{bmatrix}
\xi(k) \\
\xi^*(l)
\end{bmatrix} \in \mathbb{C} \begin{bmatrix}
1 & Y_{\lambda lk} \\
0 & 1
\end{bmatrix}
\]

we may represent the components as

\[
\xi(k) = Y_{\lambda lk} \eta + \sqrt{1 - |Y_{\lambda kl}|^2} \lambda \xi(l) = \eta,
\]

\[
\begin{bmatrix}
\eta \\
\lambda
\end{bmatrix} \in \mathbb{C} \begin{bmatrix}
1 & Y_{\lambda lk} \\
0 & 1
\end{bmatrix},
\]

It follows that

\[
E[\xi(k)z^*(l)] = E[Y_{\lambda lk} \eta + \sqrt{1 - |Y_{\lambda kl}|^2} \lambda \xi(l) \xi^*(\eta)]
\]

\[
= y^*_k y_{\lambda lk} E[\eta \sigma^*(\eta)]
\]

\[
+ \sqrt{1 - |Y_{\lambda kl}|^2} y_{\lambda lk} E[\lambda \sigma^*(\eta)]
\]

\[
= y^*_k y_{\lambda lk} E[\eta \sigma^*(\eta)]
\]

where the statistical independence between \(\eta \) and \(\lambda \) is exploited in the last equality. Notice that

\[
E[\eta \sigma^*(\eta)] = \int_0^{2\pi} \int_0^{2\pi} \rho e^{j\rho} \sigma^*(\rho e^{j\rho}) \frac{\rho}{\pi} e^{-\rho^2} d\rho d\phi = \frac{1}{\pi} \int_0^{2\pi} \rho^2 e^{-\rho^2} d\rho \int_0^{2\pi} \sigma^*(\rho e^{j\rho}) d\phi = \frac{1}{\pi} \int_0^{2\pi} \rho^2 e^{-\rho^2} d\rho \int_0^{2\pi} \rho e^{j\rho} \sigma^*(\rho e^{j\rho}) d\phi = \frac{1}{4\sqrt{\pi}} u_{\lambda lk}
\]

\[
= \frac{1}{4\sqrt{\pi}} u_{\lambda lk}
\]

where we have used the polar coordinate representation \(\eta = \rho e^{j\phi} \) in the first equality, \(\int_0^{2\pi} \rho^2 e^{-\rho^2} d\rho = (\sqrt{\pi})/4 \)

in the second last equality, and \(\int_0^{2\pi} \rho e^{j\phi} \sigma^*(\rho e^{j\phi}) d\phi = w \) in the last equality. Therefore, we have

\[
u_k E[\xi(k)z^*(l)] = u_k y_{\lambda kl} y^*_k (\frac{|w|^2}{4\sqrt{\pi}}) \hat{Z}_{kl}.
\]

3) \(u^*_k E[\xi^*(l)z(k)] = (1/(16\pi)|w|^2 \hat{Z}_{kl}.\)

Exploiting the representation

\[
E[\xi(k)z^*(l)] = \frac{1}{16\pi} |w|^2 \hat{Z}_{kl}
\]

\[
- E[(u_k \xi(k) - z(k))(u^*_k \xi^*(l) - z(l))^*].
\]

Denoting by \(s \) the \(N \)-dimensional complex vector with entries

\[
s(k) = u_k \xi(k) - z(k), k = 1, \ldots, N,
\]

the above equality implies

\[
E[zz^*] = \frac{1}{16\pi} |w|^2 \hat{Z} + E[ss^*].
\]

Now, since \(R \succeq 0 \), we have

\[
E[z^* R z] = E[tr(R z^* z)] = \frac{|w|^2}{16\pi} tr(R \hat{Z}) + E[tr(R s^* s)]
\]

\[
\geq \frac{|w|^2}{16\pi} tr(R \hat{Z}) = \frac{|w|^2}{16\pi} v(SDP).
\]

This completes the proof.

\(\square \)

It remains to show that \(\delta_c \in (0, 1) \). To this end, we claim that \(\delta_c \in (0, \pi/4) \) for any given \(\delta_c \in (0, 2\pi) \). This result stems from the following.

Proposition 4.2: The univariate function

\[
f(x) = \sqrt{2(1 - \cos x)} \frac{2\pi - x}{2\pi}
\]

is strictly increasing over \((0, 2\pi)\), and \(f(0) = f(2\pi) = 1 \).

Proof: See Appendix A.

We remark that the obtained approximation bound is independent of \(\gamma_k \)'s. Further, as already pointed out, when \(\delta_c = 2\pi \), namely phase constraints in (9) redundant, the bound is \(\pi/4 \) which agrees with the results of [21] and [22].

V. FINITE ALPHABET PHASE-CODING ALGORITHM WITH SIMILARITY CONSTRAINT (FA-PCA-SC)

In this section, we focus on the finite alphabet case namely \(\hat{c}(k) \in \{1, e^{j2\pi/M}, \ldots, e^{j2\pi(M-1)/M}\}, k = 1, \ldots, N \), and formulate the design of the phase code in terms of the following complex quadratic optimization problem:

\[
\max \quad \hat{c}^H R \hat{c}
\]

s.t. \(\|c - \hat{c}\|_{\infty} \leq \epsilon \)

\[
\hat{c}(k) \in \{1, e^{j2\pi/M, \ldots, e^{j2\pi(M-1)/M}}\}, k = 1, \ldots, N
\]

where \(\epsilon(1) \in \{1, e^{j2\pi/M}, \ldots, e^{j2\pi(M-1)/M}\}, k = 1, \ldots, N \) (12) and \(M \geq 3 \).
Notice that the constraint \(|\mathbf{e}(k) - \mathbf{a}_0(k)| \leq \epsilon, k = 1, \ldots, N\), is equivalent to \(\min \{ \mathbf{e}(k)^T \mathbf{a}_0(k) \} \geq 1 - \epsilon^2/2 \) for each \(k \), which in turn amounts to enforcing
\[
\mathbf{c}(k) \in \left\{ e^{2\pi i \frac{k}{M}}, e^{2\pi i \frac{k+1}{M}}, \ldots, e^{2\pi i \frac{k+\delta_d-1}{M}} \right\}
\]
where
\[
\beta_k = \frac{M \arg(\mathbf{c}_0(k))}{2\pi} - \left\lfloor \frac{M \arccos(1 - \epsilon^2/2)}{2\pi} \right\rfloor
\]
depends on \(\mathbf{a}_0(k) \) and \(\epsilon \)
\[
\delta_d = \left\lfloor 1 + \frac{2\pi}{M} \arccos(1 - \epsilon^2/2) \right\rfloor, \quad \epsilon \in [0,2)
\]
depends only on \(\epsilon \), and \(\lfloor \cdot \rfloor \) denotes the integer floor operation. Based on this observation, (12) can be recast as
\[
\begin{align*}
\max & \quad \mathbf{c}^T \mathbf{Rc} \\
\text{s.t.} & \quad \arg(\mathbf{c}(k)) \in \frac{2\pi}{M} [\beta_k, \beta_k + 1, \ldots, \beta_k + \delta_d - 1] \\
& \quad |\mathbf{c}(k)| = 1, \quad k = 1, \ldots, N.
\end{align*}
\] (13)

It can be exactly solved by an exhaustive search in which the objective function is evaluated for all possible combinations of the \(\mathbf{c}(k) \)'s ensuring feasibility. Nevertheless, this kind of search is prohibitive due to its exponentially increasing computational complexity (i.e., \(O(M^N) \)). Hence, it would be desirable to devise algorithms that could efficiently find (in polynomial time) the global optimal solution. Unfortunately, such algorithms do not exist because the considered problem is NP-hard. To clarify this point, we consider the special instance of redundant similarity constraints in (13), i.e., \(\epsilon = 2 \), where the problem reduces to
\[
\begin{align*}
\max & \quad \mathbf{c}^T \mathbf{Rc} \\
\text{s.t.} & \quad \mathbf{c}(k) \in \left\{ 1, e^{2\pi i \frac{1}{M}}, \ldots, e^{2\pi i \frac{\delta_d-1}{M}} \right\} \\
& \quad k = 1, \ldots, N.
\end{align*}
\] (14)

Thus, we observe that (14) is NP-hard since it includes Max-3-Cut problems [24], [25] as special cases. Due to the NP-hard nature of (13), in the following we focus our attention to approximation algorithms sharing a polynomial computational complexity. Specifically, we propose the following relaxation and randomization algorithm which provides a randomized feasible solution of (13).

Algorithm II: FA-PCA-SC

1) Solve the SDP problem below and denote by \(\hat{\mathbf{Z}} \) an optimal solution
\[
\begin{align*}
\text{(SDP)} & \quad \max & \quad \text{tr}(\mathbf{RZ}) \\
& \quad \text{s.t.} & \quad \mathbf{Z}_{kk} = 1, \quad k = 1, \ldots, N \\
& & \quad \mathbf{Z} \succeq 0
\end{align*}
\]

2) Generate a random vector \(\mathbf{\xi} \in \mathbb{C}^N \) from the complex normal distribution \(\mathcal{N}_C(0, \hat{\mathbf{W}}) \) where \(\hat{\mathbf{W}} = \mathbf{Z} \odot \mathbf{y}_d \mathbf{y}_d^T \), where \(\mathbf{y}_d = [e^{-j(2\pi k/M)}, \ldots, e^{-j(2\pi N/M)}]^T \).

3) Assign each \(\mathbf{c}(k) = \mathbf{g}_d^T(k) \mu(\xi_k) \), where \(\mu(x) \) is defined as
\[
\mu(x) = \begin{cases}
1, & \text{if } \arg x \in [0, 2\pi \frac{1}{M}) \\
e^{2\pi i \frac{x}{M}}, & \text{if } \arg x \in [2\pi \frac{1}{M}, 2\pi \frac{2}{M}) \\
\vdots & \text{if } \arg x \in [2\pi \frac{\delta_d-1}{M}, 2\pi),
\end{cases}
\]

As for the PCA-SC, the computational complexity is mostly related to the solution of the SDP problem \(\mathcal{O}(N^3) \) flops. Moreover, also with reference to the finite alphabet case, a modest number of randomizations is sufficient to ensure satisfactory performances.

A. Approximation Bound

Here, we derive the approximation bound for Algorithm II. Precisely, we prove the following.

Theorem 5.1: Denoting by \(\mathbf{z} \) an output of Algorithm II and by \(\psi(\text{SDP}) \) the optimal value of SDP, the following inequality holds true:
\[
E[\mathbf{z}^T \mathbf{Rz}] \geq R_{det}(\text{SDP})
\]
where
\[
R_{det} = \frac{\sin^2(\pi \frac{1}{4M}) \sin^2(\pi \frac{\delta_d}{4M})}{4\pi^2 \sin^2(\pi \frac{1}{M}) \left(\frac{1}{M} - 1 \right)}.
\]

Namely, Algorithm II has an approximation bound \(R_{det} \).

Proof: The proof can be done with the same technique as Theorem (4.1) replacing \(\sigma(\cdot) \) with \(\mu(\cdot) \), \(\mathbf{Y} \) with \(\hat{\mathbf{W}} \), letting
\[
w = j \left(1 - e^{2\pi i \frac{1}{M}} \right) \frac{1 - e^{2\pi i \frac{\delta_d-1}{M}}}{e^{2\pi i \frac{1}{M}} - e^{2\pi i \frac{\delta_d-1}{M}}}
\]
and observing that
\[
\begin{align*}
\int_0^{2\pi} e^{j\alpha} \mu(e^{j\alpha}) d\alpha &= \int_0^{2\pi} e^{j\alpha} d\alpha \\
&+ \int_{2\pi}^{2\pi \frac{1}{M}} e^{j\alpha} e^{-2\pi i \frac{1}{M}} d\alpha + \cdots \\
&+ \int_{2\pi \frac{\delta_d-1}{M}}^{2\pi} e^{j\alpha} e^{-2\pi i \frac{\delta_d-1}{M}} d\alpha \\
&= j \left(1 - e^{2\pi i \frac{1}{M}} \right) \\
&+ j \left(1 - e^{2\pi i \frac{1}{M}} \right) e^{-2\pi i \frac{1}{M}} e^{2\pi i \frac{1}{M}} + \cdots \\
&+ j \left(1 - e^{2\pi i \frac{1}{M}} \right) e^{2\pi i \frac{\delta_d-1}{M}} e^{-2\pi i \frac{\delta_d-1}{M}} \\
&= j \left(1 - e^{2\pi i \frac{1}{M}} \right) \left(1 + e^{-2\pi i \frac{1}{M}} e^{2\pi i \frac{1}{M}} + \cdots + e^{-2\pi i \frac{\delta_d-1}{M}} e^{2\pi i \frac{\delta_d-1}{M}} \right) \\
&= j \left(1 - e^{2\pi i \frac{1}{M}} \right) \times \frac{1 - e^{2\pi i \frac{\delta_d-1}{M}}}{e^{2\pi i \frac{1}{M}} - e^{2\pi i \frac{\delta_d-1}{M}}} \\
&= w.
\end{align*}
\]
It still remains to prove that $R_d \in (0, 1)$. To this end, we claim that $R_d \in (0, (M^2 \sin^2(\pi/M))/(4\pi))$ for any given $\delta_d \in (1, M]$. This result stems directly from the following.

Proposition 5.2: The univariate function

$$f(x) = \frac{2\sin(\frac{\pi x}{2})\sin(\frac{\pi}{2x})}{\sin(\frac{\pi}{2} - \frac{\pi}{2x})}$$

is strictly increasing over $(1, M)$, and $f(1) = 0, f(M) = 2M \sin(\pi/M).

Proof: See Appendix B.

We remark that, when δ_d is equal to M, namely inactive similarity constraint, the approximation bound is $(M^2 \sin^2(\pi/M))/(4\pi)$, which coincides with that derived in [21] and [22]. Moreover, $0 < (M^2 \sin^2(\pi/M))/(4\pi) \leq 1$ for any $M \geq 3$, and $(M^2 \sin^2(\pi/M))/(4\pi)$ tends to $\pi/4$ as M goes to infinity.

Let us just take a look at the case $M = 16$. The bound is $R = 0.7740$ if $e = 2$; $R = 0.7641$ if $e \in [1, 9616, 2); R = 0.6856$ if $e \in [1.8478, 1.9616); R = 0.5497$ if $e \in [1.6629, 1.8478); R = 0.3869$ if $e \in [1.4142, 1.6629]; R = 0.2310$ if $e \in [1.1111, 1.4142); R = 0.1084$ if $e \in [0.7654, 1.1111); R = 0.0326$ if $e \in [0.2902, 0.7654];$ if $e \in [0, 0.2902),$ then $\delta_d = 1$, i.e., the problem is trivial because it contains only one feasible solution.

Before concluding this section, it is necessary to highlight that an on-line waveform design might be computationally intensive especially for airborne applications. However, what we would remark is that the design of the code does not have to be done necessarily on-line. For instance, one can construct (off-line) a codetable, based on some suitable a priori covariance models, and just to select the element of the codetable. Further, the algorithm might be on-line applied to other kind of radars (not necessarily airborne), where the environment is not rapidly varying and there is sufficient time to perform the design of the code before a significant change in the operating conditions.

VI. PERFORMANCE ANALYSIS

The present section is aimed at analyzing the performance of the proposed encoding schemes. To this end we assume that the disturbance covariance matrix is exponentially shaped with one-lag correlation coefficient $\rho = 0.8$, i.e.

$$M_{ij} = \rho^{|i-j|}$$

and fix P_{th} of the receiver (3) to 10^{-6}. As to the temporal steering vector p, we set the normalized Doppler frequency $f_dT_r = 0.15$. The analysis is conducted in terms of both P_d and ambiguity function of the phase-coded pulse train defined as

$$\chi(\lambda, f) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} u(\psi) u^*(\psi - \lambda) e^{j2\pi f\psi} d\psi$$

$$= \sum_{l=1}^{N} \sum_{m=1}^{N} c(l)e^*(m)\chi[l - (l - m)T_r, f].$$

We also have considered other values for the target normalized Doppler frequency. The results, not reported here, confirm the performance behavior showed in this section.

The convex optimization MATLAB toolbox SeDuMi [26] is used for solving the SDP relaxation.

In Fig. 2, the detection performance of the PCA-SC is plotted versus $\|a\|^2$ with reference to the case of nonfluctuating target $N = 16, L = 20$, similarity code P3, and several values of ϵ, and considering as similarity sequence a P3 code ([27] and [11, p. 127,6.6]). For comparison, we also plot the P_d of the similarity code and the benchmark performance obtained maximizing the SNR without the constant modulus constraint, namely exploiting the optimal value of the problem

$$\max \quad c^*Rc$$

$$\text{s.t.} \quad \|a\|^2 = N.$$ (15)

Of course, the considered benchmark performance is not in general achievable by a phase code, but it can be used to evaluate the performance loss that the constant modulus assumption implies for $\epsilon = 2$. Finally, all the curves have been obtained averaging the results of $N_{exp} = 500$ statistically independent experiments. The results show that forcing stronger and stronger similarity constraints, we get worse and worse detection performances. This was actually expected since decreasing ϵ is tantamount to reducing the size of the feasible region. Moreover, this perfectly agrees with the behavior of the approximation bound which predicts worse and worse P_d decreasing ϵ. When $\epsilon = 0$, the performance end up coincident with that of the similarity code which is the only feasible solution. The curves also highlight that the performance loss implied by the constant modulus assumption is a fraction of dB for $\epsilon = 2$.

The effects of the similarity constraint on the signal ambiguity function are analyzed in Fig. 3. Therein, the modulus of $\chi(\lambda, f)$ is plotted exploiting the MATLAB toolbox of [28], under the assumption of rectangular pulses, $T_r = 5T_p$, and for several values of ϵ. The plots highlight that the closer ϵ to 0 the higher the degree of similarity between the ambiguity functions of the devised and the prefixed codes. This is due to the fact that decreasing ϵ is tantamount to reducing the size of the similarity region. In other words, we force the devised code to be more
The subsequent analysis is aimed at assessing the impact of the joint presence of both a strong and a weak sidelobe scatterer on the performance achievable through the PSA-SC algorithm. To this end, we assume that a sidelobe scatterer, with complex amplitude a_s and zero-Doppler, is present in the received signal together with the useful target component (strong scatterer, whose Doppler frequency is also zero) and the disturbance component. The weak scatterer is located in the first sidelobe peak of the strong scatterer.

P3 and the codes whose ambiguity functions are given in Fig. 3(b)–(d) (which refer to three different values of the similarity parameter), have been considered. The P_d curves, versus $|\alpha|^2$, are plotted in Fig. 4 for two values of the target to scatter power ratio ($TSR = 10 \log_{10}(|\alpha|^2/|\alpha_s|^2)$), i.e., $TSR = 10$ and $TSR = 30$ dB. The curves show that the presence of the weak scatterer reduces the detection capabilities of the codes.

In Fig. 5, we study how the number of randomizations L affects the detection performance. We assume $N = 7$, similarity code equal to the Barker code $\mathbf{a}_0 = [1, 1, 1, -1, -1, 1, -1]^T$ of length 7, $\epsilon = 1.5$, and the remaining parameters equal to those of Figs. 2 and 3. Therein we also plot the curves corresponding to the benchmark performance, the Barker code, and the approximation bound, i.e.

$$P_{d,\text{bound},c} = Q\left(\sqrt{2|\alpha|^2 R_c(\text{SDP})}, \sqrt{-2\ln P_{\theta_0}}\right).$$

Remarkably, with just 5–10 randomizations, we get a performance level very close to the curve obtained with 1000 random samples. In other words, the algorithm exhibits a very rapid convergence. Notice also that P_d of the PCA-SC is significantly superior than that corresponding to the approximation bound. This behavior can be explained observing that the quoted bound is based on a worst case analysis and it often happens in practice that the actual performance is substantially better than the worst case. A similar behavior was also found in [14] with reference to multiuser detection.
lead to the same performance curve (i.e., the corresponding \(P_d \) curves perfectly overlap). This behavior can be explained observing that the values of the similarity parameter which lie in the same \(\epsilon \)-interval lead to the same feasible region and the same approximation bound. The plots also show that, given two separated \(\epsilon \)-intervals, the one with the largest second extreme contains values of \(\epsilon \) providing the highest \(P_d \).

However, this improvement in the detection performance is accompanied by a deterioration of the coded pulse train ambiguity function. This is shown in Fig. 7 where such function is plotted assuming rectangular pulses \(T_r = 5T_p \) and for some values of \(\epsilon \) which belong to different \(\epsilon \)-intervals.

The effects of the number of randomizations on the FA-PCA-SC performance is analyzed in Fig. 8, where \(P_d \) is plotted versus \(|\alpha|^2 \) for several values of \(L, M = 4 \), and with the other simulation parameters equal to those of Fig. 5. For comparison purposes, we also plot the benchmark performance, the \(P_d \) obtained resorting to an optimal solution of (13) computed through an exhaustive search, the Barker code \(P_d \), and the \(P_d \) predicted by the approximation bound, i.e.

\[
P_d^{\text{bound}} = Q \left(\sqrt{2|\alpha|^2R_d}\left(\text{SDP}\right), -2\ln P_{\text{th}} \right).
\]

Again, the curves show a rapidly convergent behavior; 5–10 randomizations are sufficient to get a performance level very close to that obtained through the exhaustive search. Moreover, \(P_d \) of the FA-PCA-SC is significantly superior than that predicted by the approximation bound.

VII. CONCLUSION

In this paper, we have considered the design of radar phase codes which optimize the detection performance under a similarity constraint with a given sequence which exhibits a desirable ambiguity function. We have considered the cases of both continuous and finite code alphabet and have formulated the code design in terms of nonconvex quadratic optimization problems. Due to the NP-hard nature of the problems, we have focused on techniques capable of approximating the optimal solution in polynomial time. Precisely, we have devised two coding algorithms which are based on the theory of SDP relaxation and randomization. Remarkably, in both cases we have derived the approximation bounds which characterize the quality of the produced solutions.

At the analysis stage, we have assessed the performance of the new coding schemes both in terms of detection probability and ambiguity function. The results have highlighted that it is possible to realize a trade off between the actual detection performance and the shape of the pulse train ambiguity function. Moreover, the new encoding techniques require a quite modest number of randomizations to provide a satisfactory performance level.

Possible future research tracks might concern the possibility to make the algorithms adaptive with respect to the disturbance covariance matrix, namely to devise techniques which jointly estimate the code and the covariance. The introduction of knowledge-based constraints should also be investigated in the code design optimization problem, as well as the extension of the framework to the challenging MIMO radar case. Before concluding, we explicitly notice that it is possible to generalize the mathematical framework considered in this paper to a more...
It is easily verified that \(P_{\mathrm{fa}} = 10^{-6} \), non-fluctuating target, \(N = 7 \), \(\epsilon = 1.5 \), similarity code Barker, and several values of \(L \in \{1, 5, 10\} \). \(P_{\mathrm{fa}} \) benchmark (dotted-marked curve), \(P_{\mathrm{fa}} \) Barker code (solid curve), \(P_{\mathrm{fa}} \) benchmark (dash-dotted curve), \(P_{\mathrm{fa}} \) benchmark (plus-marked curve).

APPENDIX A

PROOF OF PROPOSITION 4.2

Proof: We have \(f(x) = \frac{\sqrt{2 - 2 \cos x}}{(2\pi - x)} = \frac{2\sin(x/2)}{(2\pi - x)} \) for \(x \in [0, 2\pi] \). It is easily verified that \(f(0) = 0 \) and \(f(2\pi) = 1 \). Now we wish to show that \(f(x) = \frac{2\sin(x/2)}{(2\pi - x)} \) is strictly increasing over \((0, 2\pi)\). It is easily seen that \(f'(x) = \frac{(2\sin(x/2) + \cos(x/2)(2\pi - x))}{(2\pi - x)^2} \). When \(x \in (0, \pi) \), \(f'(x) > 0 \); when \(x \in (\pi, 2\pi) \), \(f'(x) > 0 \) \(\Leftrightarrow \) \(2\sin(x/2) + \cos(x/2)(2\pi - x) > 0 \) \(\Leftrightarrow \) \(\tan(x/2) \geq \pi - x/2 \) \(\Leftrightarrow \) \(\tan s > s \) for \(s \in (0, \pi/2) \), which is a known inequality.

APPENDIX B

PROOF OF PROPOSITION 5.2

Proof: Clearly we have \(f(1) = 0 \) and \(f(M) = 2M \sin(\pi/M) > 0 \), due to \(M \geq 3 \). It is essential to prove that \(f(x) \) is strictly increasing over the interval \(1 < x < M \). To this end, we set \(f(x) := f(x)/2 \), and check its derivative

\[
f'(x) = \frac{\pi}{Mx^2 \sin^2 \left(\frac{x}{M} \right)} \times \left(x^2 \cos \left(\frac{x}{M} \right) \sin \left(\frac{1}{x} \right) \sin \left(\pi \left(\frac{1}{x} - \frac{1}{M} \right) \right) \right) + M \tan(\pi x/M) \sin \left(\frac{1}{x} \right).
\]

Since \(1 > 1/x > 1/x - 1/M > 0 \) and \(1 > x/M > 1/M \), it is seen that \(f'(x) > 0 \) for \(1 < x \leq M/2 \), and then \(f(x) \) is strictly increasing over \((1, M/2)\). Notice that

\[
f'(x) = \frac{\pi \cos \left(\frac{x}{M} \right)}{Mx^2 \sin^2 \left(\frac{x}{M} \right)} \times \left(x^2 \sin \left(\frac{1}{x} \right) \sin \left(\pi \left(\frac{1}{x} - \frac{1}{M} \right) \right) \right) + M \tan(\pi x/M) \sin \left(\frac{1}{x} \right), x \in \left(\frac{M}{2}, M \right).
\]
To prove \(f'(x) > 0 \) for \(M/2 < x < M \), it suffices to show that

\[
g(x) := x^2 \sin \left(\frac{1}{x} \right) \sin \left(\frac{1}{x} - \frac{1}{M} \right) + M \tan \left(\frac{x}{M} \right) \sin \left(\frac{1}{M} \right) < 0, \quad x \in \left(\frac{M}{2}, M \right).
\]

Observe that \(\tan(x) < x - \pi \) for \(\pi/2 < x < \pi \). Then

\[
g(x) < x^2 \sin \left(\frac{1}{x} \right) \sin \left(\frac{1}{x} - \frac{1}{M} \right) + M \left(\frac{x}{M} - \pi \right) \sin \left(\frac{1}{M} \right) = x^2 \sin \left(\frac{1}{x} \right) \left(\frac{1}{x} - \frac{1}{M} \right) - (M-x)\pi \sin \left(\frac{1}{M} \right) < x^2 \sin \left(\frac{1}{x} \right) \left(\frac{1}{x} - \frac{1}{M} \right) - (M-x)\pi \sin \left(\frac{1}{M} \right)
\]

where in the last inequality we have used the fact \(\sin : x < x \) for \(x \in (0, \pi) \), and it further suffices to show

\[
x^2 \sin \left(\frac{1}{x} \right) \left(\frac{1}{x} - \frac{1}{M} \right) < (M-x)\pi \sin \left(\frac{1}{M} \right) \quad \frac{M}{2} < x < M
\]

or equivalently

\[
x \sin \left(\frac{1}{x} \right) < M \sin \left(\frac{1}{M} \right), \quad M/2 < x < M.
\]

However, this immediately follows from the observation that the function \(x \sin(\pi/x) \) is strictly increasing over \((M/2, M) \) for any given \(M \geq 2 \). The proposition is thus proved.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor, Dr. D. P. Palomar, and the anonymous reviewers for the helpful comments toward the improvement of this paper.

REFERENCES

Antonio De Maio (S’01–AM’02–M’03–SM’07) was born in Sorrento, Italy, on June 20, 1974. He received the Dr. Eng. degree (with honors) and the Ph.D. degree in information engineering, both from the University of Naples Federico II, Naples, Italy, in 1998 and 2002, respectively.

From October to December 2004, he was a visiting researcher with the U.S. Air Force Research Laboratory, Rome, NY. From November to December 2007, he was a visiting researcher with the Chinese University of Hong Kong, Hong Kong. Currently, he is an Associate Professor with the University of Naples Federico II. His research interest lies in the field of statistical signal processing, with emphasis on radar detection, optimization applied to radar signal processing, and multiple-access communications.

Silvio De Nicola (S’07) received the Dr. Eng. degree (summa cum laude) in telecommunication engineering in 2004 from the University of Naples Federico II, Naples, Italy.

He is currently working toward the Ph.D. degree in information and telecommunication engineering with the Department of Electronic and Telecommunication Engineering, University of Naples Federico II. Until 2006, he worked as consultant with Telecom Italy. In 2007, he was a visiting student with the Chinese University of Hong Kong, Hong Kong. His research interest lies in optimization theory, with emphasis on radar signal processing.

Yongwei Huang received the B.Sc. degree in computational mathematics and the M.Sc. degree in operations research, both from Chongqing University, China, in 1998 and 2000, respectively, and the Ph.D. degree in operations research from the Chinese University of Hong Kong, Hong Kong, in 2005.

He was a Postdoctoral Fellow with the Department of Systems Engineering and Engineering Management, Chinese University of Hong Kong, from 2006 to 2007. Currently, he is a Research Associate with the Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology. His research interests are related to optimization theory and algorithms, including conic optimization, robust optimization, combinatorial optimization, and stochastic optimization, and their applications in radar signal processing.

Zhi-Quan (Tom) Luo (F’07) received the B.Sc. degree in applied mathematics in 1984 from Peking University, Beijing, China. Subsequently, he was selected by a joint committee of the American Mathematical Society and the Society of Industrial and Applied Mathematics to pursue Ph.D. study in the United States. After an one-year intensive training in mathematics and English with the Nankai Institute of Mathematics, Tianjin, China, he received the Ph.D. degree in operations research in 1989 from the Operations Research Center and the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, Cambridge.

From 1989 to 2003, he held a faculty position with the Department of Electrical and Computer Engineering, McMaster University, Hamilton, Canada, where he eventually became the Department Head and held a Canada Research Chair in Information Processing. Since April 2003, he has been with the Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities, as a full professor and holds an endowed ADC Chair in digital technology. His research interests include optimization algorithms, data communication, and signal processing.

Dr. Luo serves on the IEEE Signal Processing Society Technical Committees on Signal Processing Theory and Methods (SPTM), and on the Signal Processing for Communications (SPCOM). He is a recipient of the 2004 IEEE Signal Processing Society’s Best Paper Award, and has held editorial positions for several international journals including Journal of Optimization Theory and Applications, SIAM Journal on Optimization, Mathematics of Computation, and the IEEE TRANSACTIONS ON SIGNAL PROCESSING. He currently serves on the editorial boards for a number of international journals including Mathematical Programming and Mathematics of Operations Research.

Shuzhong Zhang received the B.Sc. degree in applied mathematics from Fudan University, China, in 1984, and the Ph.D. degree in operations research and econometrics from the Tinbergen Institute, Erasmus University, in 1991.

He is a professor with the Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong. He had held faculty positions with the Department of Econometrics, University of Groningen (1991–1993), and the Econometric Institute, Erasmus University (1993–1999). Since 1999, he has been with the Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong. His current research interests include conic, robust, and stochastic optimization.

Dr. Zhang received the Erasmus University Research Prize in 1999, the CUHK Vice-Chancellor Exemplary Teaching Award in 2001, and the SIAM Outstanding Paper Prize in 2003. He is Vice-President of the Operations Research Society in China, and an elected Council Member at Large of the Mathematical Programming Society (MPS) from 2006 to 2009. He serves on the Editorial Board of six academic journals, including Operations Research and SIAM Journal on Optimization.